BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 12019316)

  • 1. Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons.
    Kawaguchi SY; Hirano T
    J Neurosci; 2002 May; 22(10):3969-76. PubMed ID: 12019316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron.
    Sugiyama Y; Kawaguchi SY; Hirano T
    Eur J Neurosci; 2008 Feb; 27(4):884-96. PubMed ID: 18279362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABA(B) receptors in a Purkinje neuron.
    Kawaguchi S; Hirano T
    Neuron; 2000 Aug; 27(2):339-47. PubMed ID: 10985353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade.
    Flores-Hernandez J; Hernandez S; Snyder GL; Yan Z; Fienberg AA; Moss SJ; Greengard P; Surmeier DJ
    J Neurophysiol; 2000 May; 83(5):2996-3004. PubMed ID: 10805695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrin alpha3beta1 suppresses long-term potentiation at inhibitory synapses on the cerebellar Purkinje neuron.
    Kawaguchi SY; Hirano T
    Mol Cell Neurosci; 2006 Mar; 31(3):416-26. PubMed ID: 16307893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained structural change of GABA(A) receptor-associated protein underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron.
    Kawaguchi SY; Hirano T
    J Neurosci; 2007 Jun; 27(25):6788-99. PubMed ID: 17581966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS; Shi SH; Ule J; Ruggiu M; Barker LA; Darnell RB; Jan YN; Jan LY
    Cell; 2005 Oct; 123(1):105-18. PubMed ID: 16213216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation.
    Belmeguenai A; Hansel C
    J Neurosci; 2005 Nov; 25(46):10768-72. PubMed ID: 16291950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses.
    Mitoma H; Konishi S
    Neuroscience; 1999; 88(3):871-83. PubMed ID: 10363824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1alpha signaling.
    Lachamp PM; Liu Y; Liu SJ
    J Neurosci; 2009 Jan; 29(2):381-92. PubMed ID: 19144838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study.
    Ono Y; Saitow F; Konishi S
    PLoS One; 2016; 11(3):e0150636. PubMed ID: 26930485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells.
    He Q; Duguid I; Clark B; Panzanelli P; Patel B; Thomas P; Fritschy JM; Smart TG
    Nat Commun; 2015 Jul; 6():7364. PubMed ID: 26179122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex.
    Wang X; Zhong P; Yan Z
    J Neurosci; 2002 Nov; 22(21):9185-93. PubMed ID: 12417643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity.
    Calabresi P; Gubellini P; Centonze D; Picconi B; Bernardi G; Chergui K; Svenningsson P; Fienberg AA; Greengard P
    J Neurosci; 2000 Nov; 20(22):8443-51. PubMed ID: 11069952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of inhibitory synaptic plasticity in a Purkinje neuron.
    Hirano T; Kawaguchi SY
    Cerebellum; 2012 Jun; 11(2):453-4. PubMed ID: 22090365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKG and PKA signaling in LTP at GABAergic synapses.
    Nugent FS; Niehaus JL; Kauer JA
    Neuropsychopharmacology; 2009 Jun; 34(7):1829-42. PubMed ID: 19194373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation.
    Linden DJ; Ahn S
    J Neurosci; 1999 Dec; 19(23):10221-7. PubMed ID: 10575019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-induced rebound potentiation of gamma-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II.
    Kano M; Kano M; Fukunaga K; Konnerth A
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13351-6. PubMed ID: 8917594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
    Grey KB; Burrell BD
    J Neurophysiol; 2010 May; 103(5):2737-46. PubMed ID: 20457859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A.
    Nishi A; Bibb JA; Matsuyama S; Hamada M; Higashi H; Nairn AC; Greengard P
    J Neurochem; 2002 May; 81(4):832-41. PubMed ID: 12065642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.