BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 12019340)

  • 1. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles.
    Reith CA; Sillar KT
    J Neurophysiol; 1999 Dec; 82(6):3175-87. PubMed ID: 10601451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-adrenoreceptor activation modulates swimming via glycinergic and GABAergic inhibitory pathways in Xenopus laevis tadpoles.
    Merrywest SD; Fischer H; Sillar KT
    Eur J Neurosci; 2002 Jan; 15(2):375-83. PubMed ID: 11849303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brainstem control of activity and responsiveness in resting frog tadpoles: tonic inhibition.
    Lambert TD; Li WC; Soffe SR; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):331-42. PubMed ID: 14991305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making.
    Buhl E; Soffe SR; Roberts A
    J Physiol; 2015 Oct; 593(19):4423-37. PubMed ID: 26138033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a trigeminal sensory nucleus in the initiation of locomotion.
    Buhl E; Roberts A; Soffe SR
    J Physiol; 2012 May; 590(10):2453-69. PubMed ID: 22393253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stopping response of Xenopus laevis embryos: pharmacology and intracellular physiology of rhythmic spinal neurones and hindbrain neurones.
    Boothby KM; Roberts A
    J Exp Biol; 1992 Aug; 169():65-86. PubMed ID: 1402608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times.
    Koutsikou S; Merrison-Hort R; Buhl E; Ferrario A; Li WC; Borisyuk R; Soffe SR; Roberts A
    J Physiol; 2018 Dec; 596(24):6219-6233. PubMed ID: 30074236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of excitatory drive to a spinal locomotor network.
    Roberts A; Li WC; Soffe SR; Wolf E
    Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors.
    Li WC; Roberts A; Soffe SR
    J Neurosci; 2010 Dec; 30(49):16609-20. PubMed ID: 21148000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide selectively tunes inhibitory synapses to modulate vertebrate locomotion.
    McLean DL; Sillar KT
    J Neurosci; 2002 May; 22(10):4175-84. PubMed ID: 12019335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.
    Merrywest SD; McDearmid JR; Kjaerulff O; Kiehn O; Sillar KT
    Eur J Neurosci; 2003 Mar; 17(5):1013-22. PubMed ID: 12653977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles for inhibition: studies on networks controlling swimming in young frog tadpoles.
    Roberts A; Li WC; Soffe SR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Feb; 194(2):185-93. PubMed ID: 18228081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain.
    Nakayama H; Oda Y
    J Neurosci; 2004 Mar; 24(13):3199-209. PubMed ID: 15056699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the roles of glutamatergic and cholinergic synaptic drive in the control of fictive swimming frequency in young Xenopus tadpoles.
    Zhao FY; Roberts A
    J Comp Physiol A; 1998 Dec; 183(6):753-8. PubMed ID: 9861707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns.
    Fagerstedt P; Orlovsky GN; Deliagina TG; Grillner S; Ullén F
    J Neurophysiol; 2001 Nov; 86(5):2257-65. PubMed ID: 11698516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal distribution of components of excitatory synaptic input to motoneurones during swimming in young Xenopus tadpoles: experiments with antagonists.
    Zhao FY; Wolf E; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):887-901. PubMed ID: 9714868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons.
    Li WC
    Integr Comp Biol; 2011 Dec; 51(6):879-89. PubMed ID: 21562024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.