These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 12020023)
1. Evaluation of peracid activated organophosphates in studies of insecticide resistance conferred by insensitive acetylcholinesterases. Byrne FJ; Toscano NC J Econ Entomol; 2002 Apr; 95(2):425-9. PubMed ID: 12020023 [TBL] [Abstract][Full Text] [Related]
2. An insensitive acetylcholinesterase confers resistance to methomyl in the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). Byrne FJ; Toscano NC J Econ Entomol; 2001 Apr; 94(2):524-8. PubMed ID: 11332849 [TBL] [Abstract][Full Text] [Related]
3. Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Javed N; Viner R; Williamson MS; Field LM; Devonshire AL; Moores GD Insect Mol Biol; 2003 Dec; 12(6):613-20. PubMed ID: 14986922 [TBL] [Abstract][Full Text] [Related]
4. Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. Liang P; Cui JZ; Yang XQ; Gao XW Pest Manag Sci; 2007 Apr; 63(4):365-71. PubMed ID: 17323411 [TBL] [Abstract][Full Text] [Related]
5. Associations between acetylcholinesterase-1 mutations and chlorpyrifos resistance in beet armyworm, Spodoptera exigua. Teng H; Zuo Y; Jin Z; Wu Y; Yang Y Pestic Biochem Physiol; 2022 Jun; 184():105105. PubMed ID: 35715044 [TBL] [Abstract][Full Text] [Related]
6. Resistance mechanisms to chlorpyrifos and F392W mutation frequencies in the acetylcholine esterase ace1 allele of field populations of the tobacco whitefly, Bemisia tabaci in China. Zhang NN; Liu CF; Yang F; Dong SL; Han ZJ J Insect Sci; 2012; 12():41. PubMed ID: 22954331 [TBL] [Abstract][Full Text] [Related]
7. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Alon M; Alon F; Nauen R; Morin S Insect Biochem Mol Biol; 2008 Oct; 38(10):940-9. PubMed ID: 18721883 [TBL] [Abstract][Full Text] [Related]
8. An insensitive acetylcholinesterase in Culex pipiens (Diptera:Culicidae) from Portugal. Bourguet D; Capela R; Raymond M J Econ Entomol; 1996 Oct; 89(5):1060-6. PubMed ID: 8913110 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective acetylcholinesterase inhibition of the organophosphorous insecticides profenofos, fonofos, and crotoxyphos. Nillos MG; Rodriguez-Fuentes G; Gan J; Schlenk D Environ Toxicol Chem; 2007 Sep; 26(9):1949-54. PubMed ID: 17705656 [TBL] [Abstract][Full Text] [Related]
10. Acetylcholinesterases of blood-feeding flies and ticks. Temeyer KB; Tuckow AP; Brake DK; Li AY; Pérez de León AA Chem Biol Interact; 2013 Mar; 203(1):319-22. PubMed ID: 23036311 [TBL] [Abstract][Full Text] [Related]
11. Biochemical monitoring of acetylcholinesterase sensitivity to organophosphorus insecticides in glassy-winged sharpshooter Homalodisca coagulata Say (Homoptera: Cicadellidae) and smoke-tree sharpshooter H. lacerta Fowler. Byrne FJ; Mello K; Toscano NC J Econ Entomol; 2003 Dec; 96(6):1849-54. PubMed ID: 14977126 [TBL] [Abstract][Full Text] [Related]
13. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål. Zhang Y; Yang B; Li J; Liu M; Liu Z Insect Mol Biol; 2017 Aug; 26(4):453-460. PubMed ID: 28407384 [TBL] [Abstract][Full Text] [Related]
14. In vitro sequestration of two organophosphorus homologs by the rat liver. Santhoshkumar P; Shivanandappa T Chem Biol Interact; 1999 May; 119-120():277-82. PubMed ID: 10421462 [TBL] [Abstract][Full Text] [Related]
15. Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Longhurst C; Babcock JM; Denholm I; Gorman K; Thomas JD; Sparks TC Pest Manag Sci; 2013 Jul; 69(7):809-13. PubMed ID: 23203347 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal assessment of occupational exposures to the organophosphorous insecticides chlorpyrifos and profenofos in Egyptian cotton field workers. Singleton ST; Lein PJ; Dadson OA; McGarrigle BP; Farahat FM; Farahat T; Bonner MR; Fenske RA; Galvin K; Lasarev MR; Anger WK; Rohlman DS; Olson JR Int J Hyg Environ Health; 2015 Mar; 218(2):203-11. PubMed ID: 25466362 [TBL] [Abstract][Full Text] [Related]
17. Can acetylcholinesterase serve as a target for developing more selective insecticides? Lang GJ; Zhu KY; Zhang CX Curr Drug Targets; 2012 Apr; 13(4):495-501. PubMed ID: 22280346 [TBL] [Abstract][Full Text] [Related]
18. Concentration-dependent binding of chlorpyrifos oxon to acetylcholinesterase. Sultatos LG Toxicol Sci; 2007 Nov; 100(1):128-35. PubMed ID: 17702992 [TBL] [Abstract][Full Text] [Related]
19. Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl. Lee SE; Lees EM J Econ Entomol; 2001 Jun; 94(3):706-13. PubMed ID: 11425027 [TBL] [Abstract][Full Text] [Related]
20. Resistance Monitoring for Eight Insecticides on the Sweetpotato Whitefly (Hemiptera: Aleyrodidae) in China. Wang S; Zhang Y; Yang X; Xie W; Wu Q J Econ Entomol; 2017 Apr; 110(2):660-666. PubMed ID: 28334168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]