BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1202041)

  • 1. Observations with cytochemistry and ultracryotomy on the fine structure of the expanding walls in actively elongating plant cells.
    Roland JC; Vian B; Reis D
    J Cell Sci; 1975 Nov; 19(2):239-59. PubMed ID: 1202041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A freeze-etching and replication study of wall deposition in elongating plant cells.
    Vian B; Mueller S; Brown RM
    Cytobios; 1978; 22(85):7-15. PubMed ID: 753595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).
    Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ
    Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of purified endopolygalacturonase for a topochemical study of elongating cell walls at the ultrastructural level.
    Roland JC; Vian B
    J Cell Sci; 1981 Apr; 48():333-43. PubMed ID: 7276094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in collenchyma cell-wall polysaccharides in celery (Apium graveolens L.) petioles.
    Chen D; Melton LD; Zujovic Z; Harris PJ
    BMC Plant Biol; 2019 Feb; 19(1):81. PubMed ID: 30782133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall differentiation and stages involved with intercellular gas space opening.
    Roland JC
    J Cell Sci; 1978 Aug; 32():325-36. PubMed ID: 701399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.
    Chen D; Harris PJ; Sims IM; Zujovic Z; Melton LD
    BMC Plant Biol; 2017 Jun; 17(1):104. PubMed ID: 28619057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrangement of cellulose microfibrils in walls of elongating parenchyma cells.
    SETTERFIELD G; BAYLEY ST
    J Biophys Biochem Cytol; 1958 Jul; 4(4):377-82. PubMed ID: 13563544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state (13)C NMR.
    Zujovic Z; Chen D; Melton LD
    Carbohydr Res; 2016 Feb; 420():51-7. PubMed ID: 26717549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth.
    Carpita NC; Gibeaut DM
    Plant J; 1993 Jan; 3(1):1-30. PubMed ID: 8401598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multinet growth in the cell wall of Nitella.
    GREEN PB
    J Biophys Biochem Cytol; 1960 Apr; 7(2):289-96. PubMed ID: 13851527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysaccharide distribution in the cellular junctions of immature fibre cells of flax seedlings.
    Jauneau A; Cabin-Flaman A; Morvan C; Pariot C; Ripoll C; Thellier M
    Histochem J; 1994 Mar; 26(3):226-32. PubMed ID: 7515866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-substitution of dehydrated plant tissues: artefacts of aqueous fixation revisited.
    Wesley-Smith J
    Protoplasma; 2001; 218(3-4):154-67. PubMed ID: 11770432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The case for multinet growth in growing walls of plant cells.
    Preston RD
    Planta; 1982 Aug; 155(4):356-63. PubMed ID: 24271873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy.
    Paniagua C; Posé S; Morris VJ; Kirby AR; Quesada MA; Mercado JA
    Ann Bot; 2014 Oct; 114(6):1375-83. PubMed ID: 25063934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of cellulose microfibrils in primary cell walls from collenchyma.
    Thomas LH; Forsyth VT; Sturcová A; Kennedy CJ; May RP; Altaner CM; Apperley DC; Wess TJ; Jarvis MC
    Plant Physiol; 2013 Jan; 161(1):465-76. PubMed ID: 23175754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation of macromolecules in the walls of elongating carrot cells.
    McCann MC; Stacey NJ; Wilson R; Roberts K
    J Cell Sci; 1993 Dec; 106 ( Pt 4)():1347-56. PubMed ID: 7510302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein.
    Ryser U; Schorderet M; Zhao GF; Studer D; Ruel K; Hauf G; Keller B
    Plant J; 1997 Jul; 12(1):97-111. PubMed ID: 9263454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrastructural study of acid phosphatase localization in cells of Phaseolus vulgaris phloem by the use of the azo dye method.
    Esau K; Charvat ID
    Tissue Cell; 1975; 7(4):619-30. PubMed ID: 1209585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-specific and cell type-specific localization of two types of cell wall matrix polysaccharides in the clover root tip.
    Lynch MA; Staehelin LA
    J Cell Biol; 1992 Jul; 118(2):467-79. PubMed ID: 1378451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.