These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12020664)

  • 1. Temperature and pH/CO(2) modulate respiratory activity in the isolated brainstem of the bullfrog (Rana catesbeiana).
    Morales RD; Hedrick MS
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Jun; 132(2):477-87. PubMed ID: 12020664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L; Morales RD; Sandoval AV; Hedrick MS
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junction blockade with carbenoxolone differentially affects fictive breathing in larval and adult bullfrogs.
    Winmill RE; Hedrick MS
    Respir Physiol Neurobiol; 2003 Nov; 138(2-3):239-51. PubMed ID: 14609513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory pattern formation in the isolated bullfrog (Rana catesbeiana) brainstem-spinal cord.
    Reid SG; Milsom WK
    Respir Physiol; 1998 Dec; 114(3):239-55. PubMed ID: 9926988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ; Torgerson CS; Remmers JE
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory and inhibitory effects of tricaine (MS-222) on fictive breathing in isolated bullfrog brain stem.
    Hedrick MS; Winmill RE
    Am J Physiol Regul Integr Comp Physiol; 2003 Feb; 284(2):R405-12. PubMed ID: 12414435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of breathing in in vitro brain stem preparation from goldfish (Carassius auratus; Linnaeus).
    Côté É; Rousseau JP; Fournier S; Kinkead R
    Physiol Biochem Zool; 2014; 87(3):464-74. PubMed ID: 24769710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic hypoxia attenuates central respiratory-related pH/CO2 chemosensitivity in the cane toad.
    McAneney J; Reid SG
    Respir Physiol Neurobiol; 2007 Jun; 156(3):266-75. PubMed ID: 17140861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal input enhances responsiveness of respiratory discharge to central changes in pH/CO2 in bullfrogs.
    Kinkead R; Filmyer WG; Mitchell GS; Milsom WK
    J Appl Physiol (1985); 1994 Oct; 77(4):2048-51. PubMed ID: 7836236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana.
    Torgerson C; Gdovin M; Remmers J
    J Exp Biol; 1997; 200(Pt 15):2063-72. PubMed ID: 9319973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana.
    Galante RJ; Kubin L; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide as a modulator of central respiratory rhythm in the isolated brainstem of the bullfrog (Rana catesbeiana).
    Hedrick MS; Morales RD
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):243-51. PubMed ID: 10665377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fictive respiratory rhythm in the isolated brainstem of frogs.
    McLean HA; Kimura N; Kogo N; Perry SF; Remmers JE
    J Comp Physiol A; 1995 May; 176(5):703-13. PubMed ID: 7769569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldosterone, corticosterone, and thyroid hormone and their influence on respiratory control development in Lithobates catesbeianus: An in vitro study.
    Rousseau JP; Bairam A; Kinkead R
    Respir Physiol Neurobiol; 2016 Apr; 224():104-13. PubMed ID: 25476838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central respiratory pattern generation in the bullfrog, Rana catesbeiana.
    Milsom WK; Reid SG; Meier JT; Kinkead R
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):253-64. PubMed ID: 10665378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.
    Santin JM; Watters KC; Putnam RW; Hartzler LK
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(12):R1451-64. PubMed ID: 24108868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.