These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1202125)

  • 1. Cation distributions across the larval and pupal midgut of the lepidopteran, Hyalophora cecropia, in vivo.
    Harvey WR; Wood JL; Quatrale RP; Jungreis AM
    J Exp Biol; 1975 Oct; 63(2):321-30. PubMed ID: 1202125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active transport of calcium across the isolated midgut of Hyalophora cecropia.
    Wood JL; Harvey WR
    J Exp Biol; 1976 Oct; 65(2):347-60. PubMed ID: 1003085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active transport of magnesium across the isolated midgut of Hyalophora cecropia.
    Wood JL; Jungreis AM; Harvey WR
    J Exp Biol; 1975 Oct; 63(2):313-20. PubMed ID: 1202124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium exchange between bathing solution and midgut of Hyalophora cecropia and time delay for potassium flux through the midgut.
    Zerahn K
    J Exp Biol; 1975 Aug; 63(1):295-300. PubMed ID: 1159368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-Glycerol phosphatase and glycerol kinase activities in tissues of the silkmoth Hyalophora cecropia during the larval-pupal transformation.
    Jungreis AM; Dailey JC; Hereth ML
    Am J Physiol; 1975 Nov; 229(5):1448-54. PubMed ID: 173194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refinements in the short-circuit technique and its application to active potassium transport across the cecropia midgut.
    Wood JL; Moreton RB
    J Exp Biol; 1978 Dec; 77():123-40. PubMed ID: 752059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of autophagy in midgut stem cells of silkworm Bombyx mori, during larval-pupal metamorphosis.
    Gunay B; Goncu E
    Arch Insect Biochem Physiol; 2021 Sep; 108(1):e21832. PubMed ID: 34250644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantation assays using the integument of early stage Bombyx larvae: Insights into the mechanisms underlying the acquisition of competence for metamorphosis.
    Inui T; Daimon T
    J Insect Physiol; 2017 Jul; 100():35-42. PubMed ID: 28522416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the juvenile hormone analog, fenoxycarb, on ecdysone receptor B1 expression in the midgut of Bombyx mori during larval-pupal metamorphosis.
    Goncu E; Parlak O
    Folia Histochem Cytobiol; 2012 Apr; 50(1):52-7. PubMed ID: 22532136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens.
    Parthasarathy R; Palli SR
    Mech Dev; 2007 Jan; 124(1):23-34. PubMed ID: 17107775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active transport of potassium by insect midgut.
    Blankemeyer JT
    Fed Proc; 1981 Jul; 40(9):2412-6. PubMed ID: 6265291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transport by the cecropia midgut. V. Loss of potassium transport during larval-pupal transformation.
    Haskell JA; Harvey WR; Clark RM
    J Exp Biol; 1968 Feb; 48(1):25-37. PubMed ID: 5648816
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis.
    Castagna M; Shayakul C; Trotti D; Sacchi VF; Harvey WR; Hediger MA
    J Exp Biol; 1997 Jan; 200(Pt 2):269-86. PubMed ID: 9050235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae.
    Naikkhwah W; O'Donnell MJ
    J Exp Biol; 2012 Feb; 215(Pt 3):461-70. PubMed ID: 22246255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori.
    Uchibori-Asano M; Kayukawa T; Sezutsu H; Shinoda T; Daimon T
    Insect Biochem Mol Biol; 2017 Aug; 87():14-25. PubMed ID: 28627423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The goblet cavity matrix in the larval midgut of Hyalophora cecropia.
    Schultz TW; Jungreis AM
    J Insect Physiol; 1977; 23(1):29-32. PubMed ID: 858933
    [No Abstract]   [Full Text] [Related]  

  • 17. Proteomic profiling of the silkworm skeletal muscle proteins during larval-pupal metamorphosis.
    Zhang P; Aso Y; Jikuya H; Kusakabe T; Lee JM; Kawaguchi Y; Yamamoto K; Banno Y; Fujii H
    J Proteome Res; 2007 Jun; 6(6):2295-303. PubMed ID: 17497908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the short circuit decay profile and maintenance of the cation transport capacity of the larval lepidopteran midgut in vitro and in vivo.
    Schultz TW; Jungreis AM
    Tissue Cell; 1977; 9(2):255-72. PubMed ID: 906016
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of active K transport in the isolated midgut of Hyalophora cecropia by Tl+.
    Zerahn K
    J Exp Biol; 1982 Feb; 96():307-13. PubMed ID: 7077220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active transport of sodium by the isolated midgut of Hyalophora cecropia.
    Harvey WR; Zerahn K
    J Exp Biol; 1971 Feb; 54(1):269-74. PubMed ID: 5549768
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.