BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12021284)

  • 1. Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation.
    Li D; Zhu H; Liu K; Liu X; Leggewie G; Udvardi M; Wang D
    J Biol Chem; 2002 Aug; 277(31):27772-81. PubMed ID: 12021284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings.
    Veljanovski V; Vanderbeld B; Knowles VL; Snedden WA; Plaxton WC
    Plant Physiol; 2006 Nov; 142(3):1282-93. PubMed ID: 16963519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation.
    Hurley BA; Tran HT; Marty NJ; Park J; Snedden WA; Mullen RT; Plaxton WC
    Plant Physiol; 2010 Jul; 153(3):1112-22. PubMed ID: 20348213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization.
    Liang C; Tian J; Lam HM; Lim BL; Yan X; Liao H
    Plant Physiol; 2010 Feb; 152(2):854-65. PubMed ID: 19955264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae).
    Shane MW; Stigter K; Fedosejevs ET; Plaxton WC
    J Exp Bot; 2014 Nov; 65(20):6097-106. PubMed ID: 25170100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis purple acid phosphatase 10 is a component of plant adaptive mechanism to phosphate limitation.
    Wang L; Liu D
    Plant Signal Behav; 2012 Mar; 7(3):306-10. PubMed ID: 22476468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes.
    Liu PD; Xue YB; Chen ZJ; Liu GD; Tian J
    J Exp Bot; 2016 Jul; 67(14):4141-54. PubMed ID: 27194738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.
    Qian D; Jiang L; Lu L; Wei C; Li Y
    PLoS One; 2011 Mar; 6(3):e18300. PubMed ID: 21494323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold.
    Antonyuk SV; Olczak M; Olczak T; Ciuraszkiewicz J; Strange RW
    IUCrJ; 2014 Mar; 1(Pt 2):101-9. PubMed ID: 25075326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Critical Role of
    Farhadi S; Sabet MS; Malboobi MA; Moieni A
    Front Plant Sci; 2020; 11():565865. PubMed ID: 33101335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower.
    Zhu H; Qian W; Lu X; Li D; Liu X; Liu K; Wang D
    Plant Mol Biol; 2005 Nov; 59(4):581-94. PubMed ID: 16244908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant purple acid phosphatases - genes, structures and biological function.
    Olczak M; Morawiecka B; Watorek W
    Acta Biochim Pol; 2003; 50(4):1245-56. PubMed ID: 14740011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana.
    Tran HT; Qian W; Hurley BA; She YM; Wang D; Plaxton WC
    Plant Cell Environ; 2010 Nov; 33(11):1789-803. PubMed ID: 20545876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of rice purple acid phosphatases related to phosphate starvation signalling.
    Zhang Q; Wang C; Tian J; Li K; Shou H
    Plant Biol (Stuttg); 2011 Jan; 13(1):7-15. PubMed ID: 21143719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation.
    Wang L; Lu S; Zhang Y; Li Z; Du X; Liu D
    J Integr Plant Biol; 2014 Mar; 56(3):299-314. PubMed ID: 24528675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation.
    Wang L; Li Z; Qian W; Guo W; Gao X; Huang L; Wang H; Zhu H; Wu JW; Wang D; Liu D
    Plant Physiol; 2011 Nov; 157(3):1283-99. PubMed ID: 21941000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multifaceted nature of plant acid phosphatases: purification, biochemical features, and applications.
    Sharma L; Kahandal A; Kanagare A; Kulkarni A; Tagad CK
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2282379. PubMed ID: 37985663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus deficiency induces sexual reproduction in the dinoflagellate Prorocentrum cordatum.
    Kalinina V; Berdieva M; Aksenov N; Skarlato S
    Sci Rep; 2023 Aug; 13(1):14191. PubMed ID: 37648777
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.