These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 120217)

  • 1. Thiocyanate utilization by an Arthrobacter.
    Betts PM; Rinder DF; Fleeker JR
    Can J Microbiol; 1979 Nov; 25(11):1277-82. PubMed ID: 120217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains].
    Grigor'eva NV; Kondrat'eva TF; Krasil'nikova EN; Karavaĭko GI
    Mikrobiologiia; 2006; 75(3):320-8. PubMed ID: 16871797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strain of Arthrobacter that tolerates high concentrations of nitrate.
    Piñar G; Ramos JL
    Biodegradation; 1997-1998; 8(6):393-9. PubMed ID: 15765585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on biodegradation of nicotine by Arthrobacter sp. strain HF-2.
    Ruan A; Min H; Zhu W
    J Environ Sci Health B; 2006; 41(7):1159-70. PubMed ID: 16923598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium: the degradative pathway involves formation of ammonia and tetrathionate.
    Stratford J; Dias AE; Knowles CJ
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2657-62. PubMed ID: 8000536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil.
    Eschbach M; Möbitz H; Rompf A; Jahn D
    FEMS Microbiol Lett; 2003 Jun; 223(2):227-30. PubMed ID: 12829291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arthrobacter sp. strain KU001 isolated from a Thai soil degrades atrazine in the presence of inorganic nitrogen sources.
    Sajjaphan K; Heepngoen P; Sadowsky MJ; Boonkerd N
    J Microbiol Biotechnol; 2010 Mar; 20(3):602-8. PubMed ID: 20372034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp.
    Chaudhari AU; Kodam KM
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1167-74. PubMed ID: 19838695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of L-threonine by a species of Arthrobacter. A novel catabolic role for "aminoacetone synthase".
    McGilvray D; Morris JG
    Biochem J; 1969 May; 112(5):657-71. PubMed ID: 5821726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and pigment production by Arthrobacter pyridinolis n. sp.
    Kolenbrander PE; Lotong N; Ensign JC
    Arch Microbiol; 1976 Nov; 110(23):239-45. PubMed ID: 1015948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial metabolism of phenolic amines: degradation of dl-synephrine by an unidentified arthrobacter.
    Devi NA; Kutty RK; Vasantharajan VN; Subba RAO PV
    J Bacteriol; 1975 Jun; 122(3):866-73. PubMed ID: 1150621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil.
    Elväng AM; Westerberg K; Jernberg C; Jansson JK
    Environ Microbiol; 2001 Jan; 3(1):32-42. PubMed ID: 11225721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an autotrophic bioreactor microbial consortium degrading thiocyanate.
    Watts MP; Spurr LP; Gan HM; Moreau JW
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5889-5901. PubMed ID: 28510801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineralization of melamine and cyanuric acid as sole nitrogen source by newly isolated Arthrobacter spp. using a soil-charcoal perfusion method.
    Hatakeyama T; Takagi K; Yamazaki K; Sakakibara F; Ito K; Takasu E; Naokawa T; Fujii K
    World J Microbiol Biotechnol; 2015 May; 31(5):785-93. PubMed ID: 25752233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization and degradation of imazaquin by a naturally occurring isolate of Arthrobacter crystallopoietes.
    Wang X; Liu X; Wang H; Dong Q
    Chemosphere; 2007 May; 67(11):2156-62. PubMed ID: 17267013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth characteristics of three bacterial isolates from an arctic soil.
    Nelson LM; Parkinson D
    Can J Microbiol; 1978 Aug; 24(8):909-14. PubMed ID: 688099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of homoserine lactone as a sole source of carbon and energy by soil Arthrobacter and Burkholderia species.
    Yang WW; Han JI; Leadbetter JR
    Arch Microbiol; 2006 Mar; 185(1):47-54. PubMed ID: 16341844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae DH19.
    Wang Y; Wang C; Li A; Gao J
    Lett Appl Microbiol; 2015 Oct; 61(4):403-10. PubMed ID: 26250405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand.
    Aislabie J; Bej AK; Ryburn J; Lloyd N; Wilkins A
    FEMS Microbiol Ecol; 2005 Apr; 52(2):279-86. PubMed ID: 16329913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.