These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 12021809)

  • 1. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier.
    Prieto MB; Hidalgo A; Rodríguez-Fernández C; Serra JL; Llama MJ
    Appl Microbiol Biotechnol; 2002 May; 58(6):853-9. PubMed ID: 12021809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor.
    Begoña Prieto M; Hidalgo A; Serra JL; Llama MJ
    J Biotechnol; 2002 Jul; 97(1):1-11. PubMed ID: 12052678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1.
    Hidalgo A; Lopategi A; Prieto M; Serra JL; Llama MJ
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):260-3. PubMed ID: 11876421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor.
    Bajaj M; Gallert C; Winter J
    Bioresour Technol; 2008 Nov; 99(17):8376-81. PubMed ID: 18440804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IAL-CHS (internal airlift loop--ceramic honeycomb supports) reactor used for biodegradation of 2,4-dichlorophenol and phenol.
    Zhang Y; Quan X; Rittmann BE; Wang J; Shi H; Qian Y; Yu J
    Water Sci Technol; 2004; 49(11-12):247-54. PubMed ID: 15303748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol biodegradation and its effect on the nitrification process.
    Amor L; Eiroa M; Kennes C; Veiga MC
    Water Res; 2005 Aug; 39(13):2915-20. PubMed ID: 15998531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of high concentration phenol containing heavy metal ions by functional biofilm in bioelectro-reactor.
    Li XG; Wang T; Sun JS; Huang X; Kong XS
    J Environ Sci (China); 2006; 18(4):639-43. PubMed ID: 17078538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor.
    Křiklavová L; Truhlář M; Škodováa P; Lederer T; Jirků V
    Bioresour Technol; 2014 Sep; 167():510-3. PubMed ID: 25013934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of mixture of phenol and formaldehyde in wastewater using a single-basin MSCR process.
    Moussavi G; Heidarizad M
    J Biotechnol; 2010 Oct; 150(2):240-5. PubMed ID: 20804795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1].
    Kitova AE; Kuvichkina TN; Arinbasarova AIu; Reshetilov AN
    Prikl Biokhim Mikrobiol; 2004; 40(3):307-11. PubMed ID: 15283333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effect of plate pulsation parameters and phenol concentrations on the phenol removal efficiency of a pulsed plate bioreactor with immobilized cells.
    Shetty KV; Kedargol MR; Srinikethan G
    Water Sci Technol; 2008; 58(6):1253-9. PubMed ID: 18845864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenol removal in packed bed reactor under denitrifying conditions.
    Błaszczyk M; Son TT; Przytocka-Jusiak M; Suszek A
    Acta Microbiol Pol; 2002; 51(1):39-45. PubMed ID: 12184446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of pulsed plate bioreactor for biodegradation of phenol.
    Shetty KV; Kalifathulla I; Srinikethan G
    J Hazard Mater; 2007 Feb; 140(1-2):346-52. PubMed ID: 17092642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of diesel fuel-contaminated wastewater using a three-phase fluidized bed reactor.
    Lohi A; Alvarez Cuenca M; Anania G; Upreti SR; Wan L
    J Hazard Mater; 2008 Jun; 154(1-3):105-11. PubMed ID: 18006229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nutrient addition on phenol biodegradation rate in biofilm reactors for hypersaline wastewater treatment.
    Li Y; Lei Z; Zhang Z; Sugiura N
    Environ Technol; 2006 May; 27(5):511-20. PubMed ID: 16749619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation.
    Weidhaas JL; Schroeder ED; Chang DP
    Biotechnol Bioeng; 2007 Aug; 97(6):1408-14. PubMed ID: 17286267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.