These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 12021835)
1. Ethopharmacological analysis of the unstable elevated exposed plus maze, a novel model of extreme anxiety: predictive validity and sensitivity to anxiogenic agents. Jones N; Duxon MS; King SM Psychopharmacology (Berl); 2002 May; 161(3):314-23. PubMed ID: 12021835 [TBL] [Abstract][Full Text] [Related]
2. 5-HT2C receptor mediation of unconditioned escape behaviour in the unstable elevated exposed plus maze. Jones N; Duxon MS; King SM Psychopharmacology (Berl); 2002 Nov; 164(2):214-20. PubMed ID: 12404085 [TBL] [Abstract][Full Text] [Related]
3. Further evidence for the predictive validity of the unstable elevated exposed plus-maze, a behavioural model of extreme anxiety in rats: differential effects of fluoxetine and chlordiazepoxide. Jones N; King SM; Duxon MS Behav Pharmacol; 2002 Nov; 13(7):525-35. PubMed ID: 12409991 [TBL] [Abstract][Full Text] [Related]
4. Use of the elevated T-maze to study anxiety in mice. Carvalho-Netto EF; Nunes-de-Souza RL Behav Brain Res; 2004 Jan; 148(1-2):119-32. PubMed ID: 14684253 [TBL] [Abstract][Full Text] [Related]
5. Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Abrams JK; Johnson PL; Hay-Schmidt A; Mikkelsen JD; Shekhar A; Lowry CA Neuroscience; 2005; 133(4):983-97. PubMed ID: 15916857 [TBL] [Abstract][Full Text] [Related]
6. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta. Yeung M; Lu L; Hughes AM; Treit D; Dickson CT Neuropharmacology; 2013 Dec; 75():47-52. PubMed ID: 23851259 [TBL] [Abstract][Full Text] [Related]
7. The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A(2A) adenosine receptor antagonists. El Yacoubi M; Ledent C; Parmentier M; Costentin J; Vaugeois JM Psychopharmacology (Berl); 2000 Feb; 148(2):153-63. PubMed ID: 10663430 [TBL] [Abstract][Full Text] [Related]
8. GABA/benzodiazepine receptors in the ventromedial hypothalamic nucleus regulate both anxiety and panic-related defensive responses in the elevated T-maze. Bueno CH; Zangrossi H; Viana Mde B Brain Res Bull; 2007 Sep; 74(1-3):134-41. PubMed ID: 17683799 [TBL] [Abstract][Full Text] [Related]
9. Ethopharmacological analysis of the effects of putative 'anxiogenic' agents in the mouse elevated plus-maze. Rodgers RJ; Cole JC; Aboualfa K; Stephenson LH Pharmacol Biochem Behav; 1995 Dec; 52(4):805-13. PubMed ID: 8587923 [TBL] [Abstract][Full Text] [Related]
10. Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Singewald N; Salchner P; Sharp T Biol Psychiatry; 2003 Feb; 53(4):275-83. PubMed ID: 12586446 [TBL] [Abstract][Full Text] [Related]
11. Panicolytic-like effect induced by the stimulation of GABAA and GABAB receptors in the dorsal periaqueductal grey of rats. Bueno CH; Zangrossi H; Nogueira RL; Soares VP; Viana MB Eur J Pharmacol; 2005 Jun; 516(3):239-46. PubMed ID: 15975569 [TBL] [Abstract][Full Text] [Related]
12. Escape-related behaviours in an unstable elevated and exposed environment. I. A new behavioural model of extreme anxiety. King SM Behav Brain Res; 1999 Jan; 98(1):113-26. PubMed ID: 10210528 [TBL] [Abstract][Full Text] [Related]
13. Effects of benzodiazepine receptor partial inverse agonists in the elevated plus maze test of anxiety in the rat. Cole BJ; Hillmann M; Seidelmann D; Klewer M; Jones GH Psychopharmacology (Berl); 1995 Sep; 121(1):118-26. PubMed ID: 8539336 [TBL] [Abstract][Full Text] [Related]
14. The dorsal raphe nucleus exerts opposed control on generalized anxiety and panic-related defensive responses in rats. Sena LM; Bueno C; Pobbe RL; Andrade TG; Zangrossi H; Viana MB Behav Brain Res; 2003 Jun; 142(1-2):125-33. PubMed ID: 12798273 [TBL] [Abstract][Full Text] [Related]
15. Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Singewald N; Sharp T Neuroscience; 2000; 98(4):759-70. PubMed ID: 10891619 [TBL] [Abstract][Full Text] [Related]
16. A discriminative stimulus produced by 1-(3-chlorophenyl)-piperazine (mCPP) as a putative animal model of anxiety. Wallis CJ; Lal H Prog Neuropsychopharmacol Biol Psychiatry; 1998 Apr; 22(3):547-65. PubMed ID: 9612850 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological manipulation of ultrasound induced defence behaviour in the rat. Beckett SR; Aspley S; Graham M; Marsden CA Psychopharmacology (Berl); 1996 Oct; 127(4):384-90. PubMed ID: 8923576 [TBL] [Abstract][Full Text] [Related]
18. Anxiogenic action of caffeine: an experimental study in rats. Bhattacharya SK; Satyan KS; Chakrabarti A J Psychopharmacol; 1997; 11(3):219-24. PubMed ID: 9305413 [TBL] [Abstract][Full Text] [Related]
19. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Fernandez F; Misilmeri MA; Felger JC; Devine DP Neuropsychopharmacology; 2004 Jan; 29(1):59-71. PubMed ID: 14532912 [TBL] [Abstract][Full Text] [Related]
20. Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats. Jain NS; Hirani K; Chopde CT Neuropharmacology; 2005 Apr; 48(5):627-38. PubMed ID: 15814098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]