These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 1202194)

  • 1. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW; Somjen GG
    J Physiol; 1975 Oct; 252(1):115-36. PubMed ID: 1202194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures.
    Lothman EW; Somjen GG
    Electroencephalogr Clin Neurophysiol; 1976 Sep; 41(3):253-67. PubMed ID: 60213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.
    Davidoff RA; Hackman JC; Holohean AM; Vega JL; Zhang DX
    J Physiol; 1988 Mar; 397():291-306. PubMed ID: 3261795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow depolarizing potentials recorded from glial cells in the rat superficial dorsal horn.
    Takahashi T; Tsuruhara H
    J Physiol; 1987 Jul; 388():597-610. PubMed ID: 2821245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.
    Czéh G; Kríz N; Syková E
    J Physiol; 1981 Nov; 320():57-72. PubMed ID: 6976435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurones.
    Richter DW; Camerer H; Sonnhof U
    Pflugers Arch; 1978 Sep; 376(2):139-49. PubMed ID: 568771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE; Somjen GG
    Brain Res; 1978 Aug; 151(2):291-306. PubMed ID: 209864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular K + activity and slow potential changes in spinal cord and medulla.
    Krnjević K; Morris ME
    Can J Physiol Pharmacol; 1972 Dec; 50(12):1214-7. PubMed ID: 4655054
    [No Abstract]   [Full Text] [Related]  

  • 10. Extracellular ionic and volume changes: the role in glia-neuron interaction.
    Syková E; Chvátal A
    J Chem Neuroanat; 1993; 6(4):247-60. PubMed ID: 8104419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord.
    Somjen GG; Lothman EW
    Brain Res; 1974 Mar; 69(1):153-7. PubMed ID: 4817909
    [No Abstract]   [Full Text] [Related]  

  • 13. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study.
    Walton KD; Chesler M
    Neuroscience; 1988 Jun; 25(3):983-95. PubMed ID: 2457188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ.
    Rosenthal M; LaManna J; Yamada S; Younts W; Somjen G
    Brain Res; 1979 Feb; 162(1):113-27. PubMed ID: 761076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume.
    Syková E
    Can J Physiol Pharmacol; 1987 May; 65(5):1058-66. PubMed ID: 3621032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular potassium, glial and neuronal potentials in the solitary complex of rat brainstem slices.
    Ballanyi K; Branchereau P; Champagnat J; Fortin G; Velluti J
    Brain Res; 1993 Apr; 607(1-2):99-107. PubMed ID: 8097669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ changes in the extracellular space of the spinal cord and their physiological role.
    Syková E
    J Exp Biol; 1981 Dec; 95():93-109. PubMed ID: 6278046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro.
    Thompson SW; Woolf CJ; Sivilotti LG
    J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial depolarization evokes a larger potassium accumulation around oligodendrocytes than around astrocytes in gray matter of rat spinal cord slices.
    Chvátal A; Anderová M; Ziak D; Syková E
    J Neurosci Res; 1999 Jun; 56(5):493-505. PubMed ID: 10369216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.