These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12021942)

  • 1. A sudden arterial blood pressure decrease is compensated by an increase in intracranial blood volume.
    Rosengarten B; Rüskes D; Mendes I; Stolz E
    J Neurol; 2002 May; 249(5):538-41. PubMed ID: 12021942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between arterial inflow and venous outflow in idiopathic and secondary intracranial hypertension.
    Bateman GA
    J Clin Neurosci; 2006 Jun; 13(5):550-6; discussion 557. PubMed ID: 16540323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study.
    Schoser BG; Riemenschneider N; Hansen HC
    J Neurosurg; 1999 Nov; 91(5):744-9. PubMed ID: 10541230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spondylogenic hypertension of deep veins of the brain].
    Gongal'skiĭ VV; Prokopovich EV
    Lik Sprava; 2005; (1-2):69-71. PubMed ID: 15915998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak systolic velocity Doppler index reflects most appropriately the dynamic time course of intact cerebral autoregulation.
    Rosengarten B; Kaps M
    Cerebrovasc Dis; 2002; 13(4):230-4. PubMed ID: 12011546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pig model with secondary increase of intracranial pressure after severe traumatic brain injury and temporary blood loss.
    Fritz HG; Walter B; Holzmayr M; Brodhun M; Patt S; Bauer R
    J Neurotrauma; 2005 Jul; 22(7):807-21. PubMed ID: 16004583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration.
    Czosnyka M; Richards HK; Reinhard M; Steiner LA; Budohoski K; Smielewski P; Pickard JD; Kasprowicz M
    Neurol Res; 2012 Jan; 34(1):17-24. PubMed ID: 22196857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lower limit of cerebral blood flow autoregulation is increased with elevated intracranial pressure.
    Brady KM; Lee JK; Kibler KK; Easley RB; Koehler RC; Czosnyka M; Smielewski P; Shaffner DH
    Anesth Analg; 2009 Apr; 108(4):1278-83. PubMed ID: 19299800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood flow velocities during experimental intracranial hypertension in pigs.
    Anile C; De Bonis P; Fernandez E; Ficola A; Petrella G; Santini P; Mangiola A
    Neurol Res; 2012 Nov; 34(9):859-63. PubMed ID: 22889577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A canine model of intracranial arteriovenous shunt with acute cerebral venous hypertension.
    Yamada M; Miyasaka Y; Irikura K; Nagai S; Tanaka R
    Neurol Res; 1998 Jan; 20(1):73-8. PubMed ID: 9471106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ICP and CBF regulation: a new hypothesis to explain the "windkessel" phenomenon.
    Carmelo A; Ficola A; Fravolini ML; La Cava M; Maira G; Mangiola A
    Acta Neurochir Suppl; 2002; 81():112-6. PubMed ID: 12168279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of the large cerebral vein in active regulation of venous outflow].
    Gongal'skiĭ VV; Prokopovich EV
    Lik Sprava; 2005; (3):64-7. PubMed ID: 16025682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA).
    Ludwig HC; Klingler M; Timmermann A; Weyland W; Mursch K; Reparon C; Markakis E
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2000 Mar; 35(3):141-5. PubMed ID: 10768051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans.
    Roatta S; Micieli G; Bosone D; Losano G; Bini R; Cavallini A; Passatore M
    J Auton Nerv Syst; 1998 Jul; 71(2-3):159-66. PubMed ID: 9760052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension.
    Chen J; Wang XM; Luan LM; Chao BT; Pang B; Song H; Pang Q
    Chin Med J (Engl); 2012 Apr; 125(7):1303-9. PubMed ID: 22613606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension.
    Ogoh S; Hirasawa A; Sugawara J; Nakahara H; Ueda S; Shoemaker JK; Miyamoto T
    J Appl Physiol (1985); 2015 Sep; 119(5):527-33. PubMed ID: 26159757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure.
    Wilson MH
    J Cereb Blood Flow Metab; 2016 Aug; 36(8):1338-50. PubMed ID: 27174995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow.
    Bouma GJ; Muizelaar JP; Bandoh K; Marmarou A
    J Neurosurg; 1992 Jul; 77(1):15-9. PubMed ID: 1607958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.