These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12022835)

  • 1. Revisiting the mechanism of P450 enzymes with the radical clocks norcarane and spiro[2,5]octane.
    Auclair K; Hu Z; Little DM; Ortiz De Montellano PR; Groves JT
    J Am Chem Soc; 2002 May; 124(21):6020-7. PubMed ID: 12022835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable aliphatic hydroxylation by the diiron enzyme toluene 4-monooxygenase in reactions with radical or cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane.
    Moe LA; Hu Z; Deng D; Austin RN; Groves JT; Fox BG
    Biochemistry; 2004 Dec; 43(50):15688-701. PubMed ID: 15595825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of norcarane as a probe for radicals in cytochome p450- and soluble methane monooxygenase-catalyzed hydroxylation reactions.
    Newcomb M; Shen R; Lu Y; Coon MJ; Hollenberg PF; Kopp DA; Lippard SJ
    J Am Chem Soc; 2002 Jun; 124(24):6879-86. PubMed ID: 12059209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction.
    Brazeau BJ; Austin RN; Tarr C; Groves JT; Lipscomb JD
    J Am Chem Soc; 2001 Dec; 123(48):11831-7. PubMed ID: 11724588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desaturase reactions complicate the use of norcarane as a mechanistic probe. Unraveling the mixture of twenty-plus products formed in enzyme-catalyzed oxidations of norcarane.
    Newcomb M; Chandrasena RE; Lansakara-P DS; Kim HY; Lippard SJ; Beauvais LG; Murray LJ; Izzo V; Hollenberg PF; Coon MJ
    J Org Chem; 2007 Feb; 72(4):1121-7. PubMed ID: 17288366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical intermediates in the catalytic oxidation of hydrocarbons by bacterial and human cytochrome P450 enzymes.
    Jiang Y; He X; Ortiz de Montellano PR
    Biochemistry; 2006 Jan; 45(2):533-42. PubMed ID: 16401082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone.
    He X; de Montellano PR
    J Biol Chem; 2004 Sep; 279(38):39479-84. PubMed ID: 15258138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450 hydroxylation of hydrocarbons: variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes.
    Atkinson JK; Ingold KU
    Biochemistry; 1993 Sep; 32(35):9209-14. PubMed ID: 8369287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclopropyl containing fatty acids as mechanistic probes for cytochromes P450.
    Cryle MJ; Ortiz de Montellano PR; De Voss JJ
    J Org Chem; 2005 Apr; 70(7):2455-69. PubMed ID: 15787531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular probes of the mechanism of cytochrome P450. Oxygen traps a substrate radical intermediate.
    Cooper HL; Groves JT
    Arch Biochem Biophys; 2011 Mar; 507(1):111-8. PubMed ID: 21075070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells.
    Bertrand E; Sakai R; Rozhkova-Novosad E; Moe L; Fox BG; Groves JT; Austin RN
    J Inorg Biochem; 2005 Oct; 99(10):1998-2006. PubMed ID: 16084596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of a synthetic strategy: total synthesis of (+/-)-welwitindolinone A isonitrile.
    Reisman SE; Ready JM; Weiss MM; Hasuoka A; Hirata M; Tamaki K; Ovaska TV; Smith CJ; Wood JL
    J Am Chem Soc; 2008 Feb; 130(6):2087-100. PubMed ID: 18198870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Products from enzyme-catalyzed oxidations of norcarenes.
    Newcomb M; Lansakara-P DS; Kim HY; Chandrasena RE; Lippard SJ; Beauvais LG; Murray LJ; Izzo V; Hollenberg PF; Coon MJ
    J Org Chem; 2007 Feb; 72(4):1128-33. PubMed ID: 17288367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation.
    Wüst M; Croteau RB
    Biochemistry; 2002 Feb; 41(6):1820-7. PubMed ID: 11827526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypersensitive radical probes and the mechanisms of cytochrome P450-catalyzed hydroxylation reactions.
    Newcomb M; Toy PH
    Acc Chem Res; 2000 Jul; 33(7):449-55. PubMed ID: 10913233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenation cascade analysis in conversion of n-octane catalyzed by cytochrome P450 CYP102A3 mutants at the P331 site.
    Wang S; Liu Z
    Biotechnol Appl Biochem; 2017 Jan; 64(1):14-19. PubMed ID: 26704938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical clock substrates, their C-H hydroxylation mechanism by cytochrome P450, and other reactivity patterns: what does theory reveal about the clocks' behavior?
    Kumar D; de Visser SP; Sharma PK; Cohen S; Shaik S
    J Am Chem Soc; 2004 Feb; 126(6):1907-20. PubMed ID: 14871124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Insights into the Selectivity of Norcarane Oxidation by Oxo-Manganese(V) Porphyrin Complexes.
    Ma Z; Nakatani N; Hada M
    Chemphyschem; 2022 Mar; 23(5):e202100810. PubMed ID: 34981629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.