These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12022880)

  • 21. Mechanistic studies of the O2-dependent aliphatic carbon-carbon bond cleavage reaction of a nickel enolate complex.
    Berreau LM; Borowski T; Grubel K; Allpress CJ; Wikstrom JP; Germain ME; Rybak-Akimova EV; Tierney DL
    Inorg Chem; 2011 Feb; 50(3):1047-57. PubMed ID: 21222442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regioselective aliphatic carbon-carbon bond cleavage by a model system of relevance to iron-containing acireductone dioxygenase.
    Allpress CJ; Grubel K; Szajna-Fuller E; Arif AM; Berreau LM
    J Am Chem Soc; 2013 Jan; 135(2):659-68. PubMed ID: 23214721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. XAS characterization of the active sites of novel intradiol ring-cleaving dioxygenases: hydroxyquinol and chlorocatechol dioxygenases.
    Briganti F; Mangani S; Pedocchi L; Scozzafava A; Golovleva LA; Jadan AP; Solyanikova IP
    FEBS Lett; 1998 Aug; 433(1-2):58-62. PubMed ID: 9738933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE.
    Colpas GJ; Brayman TG; Ming LJ; Hausinger RP
    Biochemistry; 1999 Mar; 38(13):4078-88. PubMed ID: 10194322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nickel(ii) complexes of a 3N ligand as a model for diketone cleaving unusual nickel(ii)-dioxygenase enzymes.
    Ramasubramanian R; Anandababu K; Kumar M; Mayilmurugan R
    Dalton Trans; 2018 Mar; 47(12):4049-4053. PubMed ID: 29488521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural investigations of the nickel-induced inhibition of truncated constructs of the JMJD2 family of histone demethylases using X-ray absorption spectroscopy.
    Giri NC; Passantino L; Sun H; Zoroddu MA; Costa M; Maroney MJ
    Biochemistry; 2013 Jun; 52(24):4168-83. PubMed ID: 23692052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine.
    Sauter M; Lorbiecke R; Ouyang B; Pochapsky TC; Rzewuski G
    Plant J; 2005 Dec; 44(5):718-29. PubMed ID: 16297065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of metal-substituted Klebsiella aerogenes urease.
    Yamaguchi K; Cosper NJ; Stålhandske C; Scott RA; Pearson MA; Karplus PA; Hausinger RP
    J Biol Inorg Chem; 1999 Aug; 4(4):468-77. PubMed ID: 10555581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases.
    Straganz GD; Nidetzky B
    Chembiochem; 2006 Oct; 7(10):1536-48. PubMed ID: 16858718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg(2+)-containing dioxygenase involved in aromatic catabolism.
    Gibello A; Ferrer E; Martín M; Garrido-Pertierra A
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):145-50. PubMed ID: 8037662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2-Ni Complex.
    Jeoung JH; Nianios D; Fetzner S; Dobbek H
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3281-4. PubMed ID: 26846734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of water on the formation of O2-reactive divalent metal enolate complexes of relevance to acireductone dioxygenases.
    Grubel K; Ingle GK; Fuller AL; Arif AM; Berreau LM
    Dalton Trans; 2011 Oct; 40(40):10609-20. PubMed ID: 21847470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate, substrate analogue, and inhibitor interactions with the ferrous active site of catechol 2,3-dioxygenase monitored through XAS studies.
    Bertini I; Briganti F; Mangani S; Nolting HF; Scozzafava A
    FEBS Lett; 1994 Aug; 350(2-3):207-12. PubMed ID: 8070565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics.
    Shearer J
    Acc Chem Res; 2014 Aug; 47(8):2332-41. PubMed ID: 24825124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin.
    Steiner RA; Meyer-Klaucke W; Dijkstra BW
    Biochemistry; 2002 Jun; 41(25):7963-8. PubMed ID: 12069586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hexanickel enediolate cluster generated in an acireductone dioxygenase model reaction.
    Rudzka K; Grubel K; Arif AM; Berreau LM
    Inorg Chem; 2010 Sep; 49(17):7623-5. PubMed ID: 20690683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human acireductone dioxygenase (HsARD), cancer and human health: Black hat, white hat or gray?
    Liu X; Pochapsky TC
    Inorganics (Basel); 2019 Aug; 7(8):. PubMed ID: 34322541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quercetinase QueD of Streptomyces sp. FLA, a monocupin dioxygenase with a preference for nickel and cobalt.
    Merkens H; Kappl R; Jakob RP; Schmid FX; Fetzner S
    Biochemistry; 2008 Nov; 47(46):12185-96. PubMed ID: 18950192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-protein complex formation affects the Ni-Fe and Fe-S centers in the H2-sensing regulatory hydrogenase from Ralstonia eutropha H16.
    Löscher S; Gebler A; Stein M; Sanganas O; Buhrke T; Zebger I; Dau H; Friedrich B; Lenz O; Haumann M
    Chemphyschem; 2010 Apr; 11(6):1297-306. PubMed ID: 20340124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.