BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12023151)

  • 1. Margins for translational and rotational uncertainties: a probability-based approach.
    Remeijer P; Rasch C; Lebesque JV; van Herk M
    Int J Radiat Oncol Biol Phys; 2002 Jun; 53(2):464-74. PubMed ID: 12023151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability.
    Stroom JC; de Boer HC; Huizenga H; Visser AG
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):905-19. PubMed ID: 10098447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adequate margins for random setup uncertainties in head-and-neck IMRT.
    Astreinidou E; Bel A; Raaijmakers CP; Terhaard CH; Lagendijk JJ
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):938-44. PubMed ID: 15708278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of nonuniform CTV to PTV margin expansion incorporating both rotational and translational uncertainties.
    Miao J; Xu Y; Tian Y; Liu Z; Dai J
    J Appl Clin Med Phys; 2019 Dec; 20(12):78-86. PubMed ID: 31793203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planning target volumes for radiotherapy: how much margin is needed?
    Antolak JA; Rosen II
    Int J Radiat Oncol Biol Phys; 1999 Jul; 44(5):1165-70. PubMed ID: 10421551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors.
    Gordon JJ; Siebers JV
    Phys Med Biol; 2007 Apr; 52(7):1967-90. PubMed ID: 17374922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design.
    Langer MP; Papiez L; Spirydovich S; Thai V
    Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1592-603. PubMed ID: 16297718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of microscopic disease on the tumor control probability in non-small-cell lung cancer.
    Siedschlag C; Boersma L; van Loon J; Rossi M; van Baardwijk A; Gilhuijs K; Stroom J
    Radiother Oncol; 2011 Sep; 100(3):344-50. PubMed ID: 21955665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimisation algorithm for determination of treatment margins around moving and deformable targets.
    Redpath AT; Muren LP
    Radiother Oncol; 2005 Nov; 77(2):194-201. PubMed ID: 16209894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy.
    Killoran JH; Kooy HM; Gladstone DJ; Welte FJ; Beard CJ
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):213-21. PubMed ID: 9054898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria.
    Gordon JJ; Sayah N; Weiss E; Siebers JV
    Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating amorphous target margins in radiation therapy to promote maximal target coverage with minimal target size.
    Yock AD
    Comput Methods Programs Biomed; 2018 Nov; 166():1-8. PubMed ID: 30415709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method of incorporating systematic uncertainties in intensity-modulated radiotherapy optimization.
    Yang J; Mageras GS; Spirou SV; Jackson A; Yorke E; Ling CC; Chui CS
    Med Phys; 2005 Aug; 32(8):2567-79. PubMed ID: 16193787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A concept for anisotropic PTV margins including rotational setup uncertainties and its impact on the tumor control probability in canine brain tumors.
    Radonic S; Besserer J; Bley CR; Schneider U; Meier V
    Biomed Phys Eng Express; 2022 Sep; 8(6):. PubMed ID: 35981496
    [No Abstract]   [Full Text] [Related]  

  • 16. Radiotherapy margin design with particular consideration of high curvature CTVs.
    Herschtal A; Kron T; Fox C
    Med Phys; 2009 Mar; 36(3):684-97. PubMed ID: 19378729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations.
    Vanderstraeten B; Reynaert N; Paelinck L; Madani I; De Wagter C; De Gersem W; De Neve W; Thierens H
    Med Phys; 2006 Sep; 33(9):3149-58. PubMed ID: 17022207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target margins for random geometrical treatment uncertainties in conformal radiotherapy.
    Bel A; van Herk M; Lebesque JV
    Med Phys; 1996 Sep; 23(9):1537-45. PubMed ID: 8892251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of current clinical target volume definitions for glioblastoma using cell-based dosimetry stochastic methods.
    Moghaddasi L; Bezak E; Harriss-Phillips W
    Br J Radiol; 2015 Sep; 88(1053):20150155. PubMed ID: 26140450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of the shape and size of the clinical target volume on the planning target volume margin.
    Zheng B; Huang Z; Li J
    PLoS One; 2014; 9(10):e109244. PubMed ID: 25275442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.