These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12023211)

  • 1. Assessing accumulated solvent near a macromolecular solute by preferential interaction coefficients.
    Tang KE; Bloomfield VA
    Biophys J; 2002 Jun; 82(6):2876-91. PubMed ID: 12023211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosolvent preferential molecular interactions in aqueous solutions.
    Priya MH; Ashbaugh HS; Paulaitis ME
    J Phys Chem B; 2011 Nov; 115(46):13633-42. PubMed ID: 21992507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion of solvent around biomolecular solutes: a molecular dynamics simulation study.
    Makarov VA; Feig M; Andrews BK; Pettitt BM
    Biophys J; 1998 Jul; 75(1):150-8. PubMed ID: 9649375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution to the theory of preferential interaction coefficients.
    Schurr JM; Rangel DP; Aragon SR
    Biophys J; 2005 Oct; 89(4):2258-76. PubMed ID: 16055532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-chemical theory of cosolvent hydrophobic preferential interactions.
    Priya MH; Merchant S; Asthagiri D; Paulaitis ME
    J Phys Chem B; 2012 Jun; 116(22):6506-13. PubMed ID: 22574766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local solvent density augmentation around a solute in supercritical solvent bath: 1. A mechanism explanation and a new phenomenon.
    Zhou S
    J Phys Chem B; 2005 Apr; 109(15):7522-8. PubMed ID: 16851863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excluded volume contribution to cosolvent-mediated modulation of macromolecular folding and binding reactions.
    Chalikian TV
    Biophys Chem; 2016 Feb; 209():1-8. PubMed ID: 26569082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excluded volume in solvation: sensitivity of scaled-particle theory to solvent size and density.
    Tang KE; Bloomfield VA
    Biophys J; 2000 Nov; 79(5):2222-34. PubMed ID: 11053104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of kinetically irreversible protein aggregate structure.
    Patro SY; Przybycien TM
    Biophys J; 1994 May; 66(5):1274-89. PubMed ID: 8061184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model.
    Record MT; Anderson CF
    Biophys J; 1995 Mar; 68(3):786-94. PubMed ID: 7756545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular anatomy of preferential interaction coefficients by elucidating protein solvation in mixed solvents: methodology and application for lysozyme in aqueous glycerol.
    Vagenende V; Yap MG; Trout BL
    J Phys Chem B; 2009 Aug; 113(34):11743-53. PubMed ID: 19653677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of the solution structure of simple alcohols in water-acetonitrile mixtures.
    Nagy PI; Erhardt PW
    J Phys Chem B; 2005 Mar; 109(12):5855-72. PubMed ID: 16851638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local composition in the vicinity of a protein molecule in an aqueous mixed solvent.
    Shulgin IL; Ruckenstein E
    J Phys Chem B; 2007 Apr; 111(15):3990-8. PubMed ID: 17388621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability.
    Moelbert S; Normand B; De Los Rios P
    Biophys Chem; 2004 Dec; 112(1):45-57. PubMed ID: 15501575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple model of membrane proteins including solvent.
    Pagan DL; Shiryayev A; Connor TP; Gunton JD
    J Chem Phys; 2006 May; 124(18):184904. PubMed ID: 16709136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-induced micelle formation in a hydrophobic interaction model.
    Moelbert S; Normand B; De Los Rios P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061924. PubMed ID: 15244634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water coordination structures and the excess free energy of the liquid.
    Merchant S; Shah JK; Asthagiri D
    J Chem Phys; 2011 Mar; 134(12):124514. PubMed ID: 21456683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.