These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 12023219)
1. Membrane tethers formed from blood cells with available area and determination of their adhesion energy. Hochmuth RM; Marcus WD Biophys J; 2002 Jun; 82(6):2964-9. PubMed ID: 12023219 [TBL] [Abstract][Full Text] [Related]
2. Experimental studies of membrane tethers formed from human neutrophils. Marcus WD; Hochmuth RM Ann Biomed Eng; 2002; 30(10):1273-80. PubMed ID: 12540203 [TBL] [Abstract][Full Text] [Related]
3. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Hochmuth FM; Shao JY; Dai J; Sheetz MP Biophys J; 1996 Jan; 70(1):358-69. PubMed ID: 8770212 [TBL] [Abstract][Full Text] [Related]
4. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Hammer DA; Apte SM Biophys J; 1992 Jul; 63(1):35-57. PubMed ID: 1384734 [TBL] [Abstract][Full Text] [Related]
5. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Hwang WC; Waugh RE Biophys J; 1997 Jun; 72(6):2669-78. PubMed ID: 9168042 [TBL] [Abstract][Full Text] [Related]
6. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Shao JY; Hochmuth RM Biophys J; 1996 Nov; 71(5):2892-901. PubMed ID: 8913626 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Dai J; Sheetz MP Biophys J; 1995 Mar; 68(3):988-96. PubMed ID: 7756561 [TBL] [Abstract][Full Text] [Related]
12. Membrane tether extraction from human umbilical vein endothelial cells and its implication in leukocyte rolling. Girdhar G; Shao JY Biophys J; 2004 Nov; 87(5):3561-8. PubMed ID: 15339799 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamic narrowing of tubes extruded from cells. Brochard-Wyart F; Borghi N; Cuvelier D; Nassoy P Proc Natl Acad Sci U S A; 2006 May; 103(20):7660-3. PubMed ID: 16679410 [TBL] [Abstract][Full Text] [Related]
14. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling. Dodson WR; Dimitrakopoulos P Biophys J; 2010 Nov; 99(9):2906-16. PubMed ID: 21044588 [TBL] [Abstract][Full Text] [Related]
15. Role of lamellar membrane structure in tether formation from bilayer vesicles. Bozic B; Svetina S; Zeks B; Waugh RE Biophys J; 1992 Apr; 61(4):963-73. PubMed ID: 1581505 [TBL] [Abstract][Full Text] [Related]
16. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. Sackmann E FEBS Lett; 1994 Jun; 346(1):3-16. PubMed ID: 8206154 [TBL] [Abstract][Full Text] [Related]
17. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1. Tözeren A; Mackie LH; Lawrence MB; Chan PY; Dustin ML; Springer TA Biophys J; 1992 Jul; 63(1):247-58. PubMed ID: 1358239 [TBL] [Abstract][Full Text] [Related]
18. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Kapus A; Janmey P Compr Physiol; 2013 Jul; 3(3):1231-81. PubMed ID: 23897686 [TBL] [Abstract][Full Text] [Related]
19. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Ward MD; Hammer DA Biophys J; 1993 Mar; 64(3):936-59. PubMed ID: 8386020 [TBL] [Abstract][Full Text] [Related]
20. Models of dynamic extraction of lipid tethers from cell membranes. Nowak SA; Chou T Phys Biol; 2010 May; 7(2):026002. PubMed ID: 20453295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]