These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 12023219)
21. Human neutrophil surface protrusion under a point load: location independence and viscoelasticity. Xu G; Shao JY Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1434-44. PubMed ID: 18815230 [TBL] [Abstract][Full Text] [Related]
22. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Evans EA Biophys J; 1980 May; 30(2):265-84. PubMed ID: 7260275 [TBL] [Abstract][Full Text] [Related]
23. Temperature transitions of protein properties in human red blood cells. Artmann GM; Kelemen C; Porst D; Büldt G; Chien S Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638 [TBL] [Abstract][Full Text] [Related]
24. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Discher DE; Boal DH; Boey SK Biophys J; 1998 Sep; 75(3):1584-97. PubMed ID: 9726959 [TBL] [Abstract][Full Text] [Related]
26. Modeling the mechanics of tethers pulled from the cochlear outer hair cell membrane. Schumacher KR; Popel AS; Anvari B; Brownell WE; Spector AA J Biomech Eng; 2008 Jun; 130(3):031007. PubMed ID: 18532856 [TBL] [Abstract][Full Text] [Related]
27. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas. Evans E; Berk D; Leung A; Mohandas N Biophys J; 1991 Apr; 59(4):849-60. PubMed ID: 2065189 [TBL] [Abstract][Full Text] [Related]
28. [Biophysical approach to cell interaction: role of rheologic parameters]. Stolz JF Nouv Rev Fr Hematol (1978); 1986; 28(1):36-43. PubMed ID: 3520480 [No Abstract] [Full Text] [Related]
29. Forces required to initiate membrane tether extrusion from cell surface depend on cell type but not on the surface molecule. Marcus WD; McEver RP; Zhu C Mech Chem Biosyst; 2004 Dec; 1(4):245-51. PubMed ID: 16783921 [TBL] [Abstract][Full Text] [Related]
30. Biomechanics of Neutrophil Tethers. Cugno A; Marki A; Ley K Life (Basel); 2021 May; 11(6):. PubMed ID: 34073130 [TBL] [Abstract][Full Text] [Related]
31. Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells. Schumacher KR; Popel AS; Anvari B; Brownell WE; Spector AA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041905. PubMed ID: 19905340 [TBL] [Abstract][Full Text] [Related]
32. Integral protein linkage and the bilayer-skeletal separation energy in red blood cells. Butler J; Mohandas N; Waugh RE Biophys J; 2008 Aug; 95(4):1826-36. PubMed ID: 18390600 [TBL] [Abstract][Full Text] [Related]
33. Tangential tether extraction and spontaneous tether retraction of human neutrophils. Liu B; Shao JY Biophys J; 2012 Dec; 103(11):2257-64. PubMed ID: 23283224 [TBL] [Abstract][Full Text] [Related]
34. Surface tension and viscoelastic properties of embryonic tissues depend on the cytoskeleton. Forgacs G Biol Bull; 1998 Jun; 194(3):328-29; discussion 329-30. PubMed ID: 11536875 [No Abstract] [Full Text] [Related]
35. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis. Hochmuth RM; Evans EA Biophys J; 1982 Jul; 39(1):71-81. PubMed ID: 7104453 [TBL] [Abstract][Full Text] [Related]
36. Chapter 17: Application of laser tweezers to studies of membrane-cytoskeleton adhesion. Raucher D Methods Cell Biol; 2008; 89():451-66. PubMed ID: 19118686 [TBL] [Abstract][Full Text] [Related]
37. Kinetics of specific and nonspecific adhesion of red blood cells on glass. Xia Z; Goldsmith HL; van de Ven TG Biophys J; 1993 Sep; 65(3):1073-83. PubMed ID: 8241388 [TBL] [Abstract][Full Text] [Related]
38. Lipid flow through fusion pores connecting membranes of different tensions. Chizmadzhev YA; Kumenko DA; Kuzmin PI; Chernomordik LV; Zimmerberg J; Cohen FS Biophys J; 1999 Jun; 76(6):2951-65. PubMed ID: 10354423 [TBL] [Abstract][Full Text] [Related]