These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 12023238)
1. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238 [TBL] [Abstract][Full Text] [Related]
2. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Protasi F; Takekura H; Wang Y; Chen SR; Meissner G; Allen PD; Franzini-Armstrong C Biophys J; 2000 Nov; 79(5):2494-508. PubMed ID: 11053125 [TBL] [Abstract][Full Text] [Related]
3. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124 [TBL] [Abstract][Full Text] [Related]
4. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166 [TBL] [Abstract][Full Text] [Related]
5. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Meissner G; Lu X Biosci Rep; 1995 Oct; 15(5):399-408. PubMed ID: 8825041 [TBL] [Abstract][Full Text] [Related]
6. Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Flucher BE; Andrews SB; Daniels MP Mol Biol Cell; 1994 Oct; 5(10):1105-18. PubMed ID: 7865878 [TBL] [Abstract][Full Text] [Related]
7. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Franzini-Armstrong C; Protasi F; Ramesh V Ann N Y Acad Sci; 1998 Sep; 853():20-30. PubMed ID: 10603933 [TBL] [Abstract][Full Text] [Related]
8. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. Protasi F; Franzini-Armstrong C; Allen PD J Cell Biol; 1998 Feb; 140(4):831-42. PubMed ID: 9472035 [TBL] [Abstract][Full Text] [Related]
9. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen. Beard NA; Wei L; Dulhunty AF Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523 [TBL] [Abstract][Full Text] [Related]
10. Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder. Moore ED; Voigt T; Kobayashi YM; Isenberg G; Fay FS; Gallitelli MF; Franzini-Armstrong C Biophys J; 2004 Sep; 87(3):1836-47. PubMed ID: 15345562 [TBL] [Abstract][Full Text] [Related]
11. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard NA; Laver DR; Dulhunty AF Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380 [TBL] [Abstract][Full Text] [Related]
12. [Molecular architecture of the sarcoplasmic reticulum and its role in the ECC]. Rigoard P; Buffenoir K; Wager M; Bauche S; Giot JP; Lapierre F Neurochirurgie; 2009 Mar; 55 Suppl 1():S83-91. PubMed ID: 19233437 [TBL] [Abstract][Full Text] [Related]
13. Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. Paolini C; Quarta M; Nori A; Boncompagni S; Canato M; Volpe P; Allen PD; Reggiani C; Protasi F J Physiol; 2007 Sep; 583(Pt 2):767-84. PubMed ID: 17627988 [TBL] [Abstract][Full Text] [Related]
14. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Györke I; Hester N; Jones LR; Györke S Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652 [TBL] [Abstract][Full Text] [Related]
15. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. Protasi F; Franzini-Armstrong C; Flucher BE J Cell Biol; 1997 May; 137(4):859-70. PubMed ID: 9151688 [TBL] [Abstract][Full Text] [Related]
16. Sequential docking, molecular differentiation, and positioning of T-Tubule/SR junctions in developing mouse skeletal muscle. Takekura H; Flucher BE; Franzini-Armstrong C Dev Biol; 2001 Nov; 239(2):204-14. PubMed ID: 11784029 [TBL] [Abstract][Full Text] [Related]
17. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Franzini-Armstrong C; Protasi F Physiol Rev; 1997 Jul; 77(3):699-729. PubMed ID: 9234963 [TBL] [Abstract][Full Text] [Related]
18. Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo. Takekura H; Franzini-Armstrong C Dev Dyn; 1999 Apr; 214(4):372-80. PubMed ID: 10213392 [TBL] [Abstract][Full Text] [Related]
19. A mechanism for both capacitative Ca(2+) entry and excitation-contraction coupled Ca(2+) release by the sarcoplasmic reticulum of skeletal muscle cells. Islam MN; Narayanan B; Ochs RS Exp Biol Med (Maywood); 2002 Jun; 227(6):425-31. PubMed ID: 12037132 [TBL] [Abstract][Full Text] [Related]
20. Transport of the alpha subunit of the voltage gated L-type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles. Linsley JW; Hsu IU; Wang W; Kuwada JY Traffic; 2017 Sep; 18(9):622-632. PubMed ID: 28697281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]