These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 12023238)
21. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019 [TBL] [Abstract][Full Text] [Related]
22. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling. Takekura H; Takeshima H; Nishimura S; Takahashi M; Tanabe T; Flockerzi V; Hofmann F; Franzini-Armstrong C J Muscle Res Cell Motil; 1995 Oct; 16(5):465-80. PubMed ID: 8567934 [TBL] [Abstract][Full Text] [Related]
23. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Takekura H; Nishi M; Noda T; Takeshima H; Franzini-Armstrong C Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3381-5. PubMed ID: 7724570 [TBL] [Abstract][Full Text] [Related]
24. Arg(615)Cys substitution in pig skeletal ryanodine receptors increases activation of single channels by a segment of the skeletal DHPR II-III loop. Gallant EM; Curtis S; Pace SM; Dulhunty AF Biophys J; 2001 Apr; 80(4):1769-82. PubMed ID: 11259290 [TBL] [Abstract][Full Text] [Related]
25. Quantification of the calcium signaling deficit in muscles devoid of triadin. Manno C; Tammineni E; Figueroa L; Marty I; Ríos E PLoS One; 2022; 17(2):e0264146. PubMed ID: 35213584 [TBL] [Abstract][Full Text] [Related]
26. Structure and molecular organisation of the sarcoplasmic reticulum of skeletal muscle fibers. Sorrentino V; Gerli R Ital J Anat Embryol; 2003; 108(2):65-76. PubMed ID: 14503655 [TBL] [Abstract][Full Text] [Related]
27. Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle. Powell JA; Petherbridge L; Flucher BE J Cell Biol; 1996 Jul; 134(2):375-87. PubMed ID: 8707823 [TBL] [Abstract][Full Text] [Related]
28. Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. Barone V; Randazzo D; Del Re V; Sorrentino V; Rossi D J Muscle Res Cell Motil; 2015 Dec; 36(6):501-15. PubMed ID: 26374336 [TBL] [Abstract][Full Text] [Related]
29. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation-contraction coupling. Bannister RA J Muscle Res Cell Motil; 2007; 28(4-5):275-83. PubMed ID: 17899404 [TBL] [Abstract][Full Text] [Related]
30. Mice null for calsequestrin 1 exhibit deficits in functional performance and sarcoplasmic reticulum calcium handling. Olojo RO; Ziman AP; Hernández-Ochoa EO; Allen PD; Schneider MF; Ward CW PLoS One; 2011; 6(12):e27036. PubMed ID: 22164205 [TBL] [Abstract][Full Text] [Related]
31. Structural alterations in cardiac calcium release units resulting from overexpression of junctin. Zhang L; Franzini-Armstrong C; Ramesh V; Jones LR J Mol Cell Cardiol; 2001 Feb; 33(2):233-47. PubMed ID: 11162129 [TBL] [Abstract][Full Text] [Related]
32. Excitation-contraction coupling from the 1950s into the new millennium. Dulhunty AF Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804 [TBL] [Abstract][Full Text] [Related]
33. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Cheng W; Altafaj X; Ronjat M; Coronado R Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209 [TBL] [Abstract][Full Text] [Related]
34. The foundation of excitation-contraction coupling in skeletal muscle: communication between the transverse tubules and sarcoplasmic reticulum. Rall JA Adv Physiol Educ; 2024 Dec; 48(4):759-769. PubMed ID: 39116389 [TBL] [Abstract][Full Text] [Related]
35. Cross-linking analysis of the ryanodine receptor and alpha1-dihydropyridine receptor in rabbit skeletal muscle triads. Murray BE; Ohlendieck K Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):689-96. PubMed ID: 9182735 [TBL] [Abstract][Full Text] [Related]
36. Immunolocalization of triadin, DHP receptors, and ryanodine receptors in adult and developing skeletal muscle of rats. Carl SL; Felix K; Caswell AH; Brandt NR; Brunschwig JP; Meissner G; Ferguson DG Muscle Nerve; 1995 Nov; 18(11):1232-43. PubMed ID: 7565919 [TBL] [Abstract][Full Text] [Related]
37. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures. Tanaka H; Furuya T; Kameda N; Kobayashi T; Mizusawa H J Muscle Res Cell Motil; 2000; 21(6):507-26. PubMed ID: 11206130 [TBL] [Abstract][Full Text] [Related]
38. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103 [TBL] [Abstract][Full Text] [Related]
39. The Ca Dayal A; Schrötter K; Pan Y; Föhr K; Melzer W; Grabner M Nat Commun; 2017 Sep; 8(1):475. PubMed ID: 28883413 [TBL] [Abstract][Full Text] [Related]
40. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. Sun XH; Protasi F; Takahashi M; Takeshima H; Ferguson DG; Franzini-Armstrong C J Cell Biol; 1995 May; 129(3):659-71. PubMed ID: 7730402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]