BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12023867)

  • 1. Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era.
    Davies GJ; Henrissat B
    Biochem Soc Trans; 2002 Apr; 30(2):291-7. PubMed ID: 12023867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana.
    Henrissat B; Coutinho PM; Davies GJ
    Plant Mol Biol; 2001 Sep; 47(1-2):55-72. PubMed ID: 11554480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases.
    Mark P; Baumann MJ; Eklöf JM; Gullfot F; Michel G; Kallas AM; Teeri TT; Brumer H; Czjzek M
    Proteins; 2009 Jun; 75(4):820-36. PubMed ID: 19004021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic analogies amongst carbohydrate modifying enzymes.
    Lairson LL; Withers SG
    Chem Commun (Camb); 2004 Oct; (20):2243-8. PubMed ID: 15489968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why are there so many carbohydrate-active enzyme-related genes in plants?
    Coutinho PM; Stam M; Blanc E; Henrissat B
    Trends Plant Sci; 2003 Dec; 8(12):563-5. PubMed ID: 14659702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations.
    Ardèvol A; Rovira C
    J Am Chem Soc; 2015 Jun; 137(24):7528-47. PubMed ID: 25970019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases.
    Bissaro B; Monsan P; Fauré R; O'Donohue MJ
    Biochem J; 2015 Apr; 467(1):17-35. PubMed ID: 25793417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis.
    Shaikh FA; Withers SG
    Biochem Cell Biol; 2008 Apr; 86(2):169-77. PubMed ID: 18443630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent structural insights into the expanding world of carbohydrate-active enzymes.
    Davies GJ; Gloster TM; Henrissat B
    Curr Opin Struct Biol; 2005 Dec; 15(6):637-45. PubMed ID: 16263268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring genomes for glycosyltransferases.
    Hansen SF; Bettler E; Rinnan A; Engelsen SB; Breton C
    Mol Biosyst; 2010 Oct; 6(10):1773-81. PubMed ID: 20556308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of glycoside hydrolase family 98: catalytic machinery, mechanism and a novel putative carbohydrate binding module.
    Rigden DJ
    FEBS Lett; 2005 Oct; 579(25):5466-72. PubMed ID: 16212961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycoside hydrolases and glycosyltransferases: families and functional modules.
    Bourne Y; Henrissat B
    Curr Opin Struct Biol; 2001 Oct; 11(5):593-600. PubMed ID: 11785761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold.
    Hidaka M; Honda Y; Kitaoka M; Nirasawa S; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Structure; 2004 Jun; 12(6):937-47. PubMed ID: 15274915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolving hierarchical family classification for glycosyltransferases.
    Coutinho PM; Deleury E; Davies GJ; Henrissat B
    J Mol Biol; 2003 Apr; 328(2):307-17. PubMed ID: 12691742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of glycosyltransferases.
    Imberty A; Wimmerová M; Koca J; Breton C
    Methods Mol Biol; 2006; 347():145-56. PubMed ID: 17072009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Glycobiology: Mechanistic Studies of Carbohydrate-Active Enzymes and Implication for Inhibitor Design.
    Montgomery AP; Xiao K; Wang X; Skropeta D; Yu H
    Adv Protein Chem Struct Biol; 2017; 109():25-76. PubMed ID: 28683920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligosaccharide synthesis by glycosynthases.
    Perugino G; Trincone A; Rossi M; Moracci M
    Trends Biotechnol; 2004 Jan; 22(1):31-7. PubMed ID: 14690620
    [No Abstract]   [Full Text] [Related]  

  • 19. Fold recognition analysis of glycosyltransferase families: further members of structural superfamilies.
    Franco OL; Rigden DJ
    Glycobiology; 2003 Oct; 13(10):707-12. PubMed ID: 12881407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans.
    Hashimoto K; Tokimatsu T; Kawano S; Yoshizawa AC; Okuda S; Goto S; Kanehisa M
    Carbohydr Res; 2009 May; 344(7):881-7. PubMed ID: 19327755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.