These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12023902)

  • 1. Reactive sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides.
    Giles GI; Tasker KM; Collins C; Giles NM; O'rourke E; Jacob C
    Biochem J; 2002 Jun; 364(Pt 2):579-85. PubMed ID: 12023902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive sulphur species in oxidative signal transduction.
    Jacob C; Lancaster JR; Giles GI
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):1015-7. PubMed ID: 15506951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of biological thiols by highly reactive disulfide-S-oxides.
    Giles GI; Tasker KM; Jacob C
    Gen Physiol Biophys; 2002 Mar; 21(1):65-72. PubMed ID: 12168727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin.
    Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagonal electrophoresis for detection of protein disulphide bridges.
    McDonagh B
    Methods Mol Biol; 2009; 519():305-10. PubMed ID: 19381591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L.
    Zagorchev L; Seal CE; Kranner I; Odjakova M
    Free Radic Res; 2012 May; 46(5):656-64. PubMed ID: 22348546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothesis: the role of reactive sulfur species in oxidative stress.
    Giles GI; Tasker KM; Jacob C
    Free Radic Biol Med; 2001 Nov; 31(10):1279-83. PubMed ID: 11705707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of aromatic disulphides. III. In vivo haemolytic activity of aromatic disulphides.
    Munday R; Manns E
    J Appl Toxicol; 1985 Dec; 5(6):414-7. PubMed ID: 4078223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of disulphide bond formation in the endoplasmic reticulum.
    Ellgaard L
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):663-7. PubMed ID: 15493982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halogen mediated voltammetric oxidation of biological thiols and disulfides.
    Valero-Ruiz E; González-Sánchez MI; Batchelor-McAuley C; Compton RG
    Analyst; 2016 Jan; 141(1):144-9. PubMed ID: 26539570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
    Landino LM; Hagedorn TD; Kennett KL
    Cytoskeleton (Hoboken); 2014 Dec; 71(12):707-18. PubMed ID: 25545749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations.
    Sheehan D
    Biochem Biophys Res Commun; 2006 Oct; 349(2):455-62. PubMed ID: 16956583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative haemolytic activity of bis(phenylmethyl) disulphide, bis(phenylethyl) disulphide and bis(phenylpropyl) disulphide in rats.
    Munday R; Munday JS
    Food Chem Toxicol; 2003 Nov; 41(11):1609-15. PubMed ID: 12963014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of thiols and disulphides: involvement of free-radical species.
    Munday R
    Free Radic Biol Med; 1989; 7(6):659-73. PubMed ID: 2695409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxidative stress on protein thiols and disulphides in Mytilus edulis revealed by proteomics: actin and protein disulphide isomerase are redox targets.
    McDonagh B; Sheehan D
    Mar Environ Res; 2008 Jul; 66(1):193-5. PubMed ID: 18396326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanism of disulphide bond-mediated redox switches.
    Ryu SE
    J Biochem; 2012 Jun; 151(6):579-88. PubMed ID: 22554686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of aromatic disulphides. II. Intraerythrocytic hydrogen peroxide formation and oxidative damage by aromatic disulphides.
    Munday R
    J Appl Toxicol; 1985 Dec; 5(6):409-13. PubMed ID: 4078222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-based redox signalling: rust never sleeps.
    Wouters MA; Iismaa S; Fan SW; Haworth NL
    Int J Biochem Cell Biol; 2011 Aug; 43(8):1079-85. PubMed ID: 21513814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.
    Gallorini M; Petzel C; Bolay C; Hiller KA; Cataldi A; Buchalla W; Krifka S; Schweikl H
    Biomaterials; 2015 Jul; 56():114-28. PubMed ID: 25934285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.