These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Unusual salt stability in highly charged diblock co-polypeptide hydrogels. Nowak AP; Breedveld V; Pine DJ; Deming TJ J Am Chem Soc; 2003 Dec; 125(50):15666-70. PubMed ID: 14664616 [TBL] [Abstract][Full Text] [Related]
4. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
5. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels. Pakstis LM; Ozbas B; Hales KD; Nowak AP; Deming TJ; Pochan D Biomacromolecules; 2004; 5(2):312-8. PubMed ID: 15002989 [TBL] [Abstract][Full Text] [Related]
6. De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses. Liao SW; Yu TB; Guan Z J Am Chem Soc; 2009 Dec; 131(48):17638-46. PubMed ID: 19908839 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular assembly of block copolypeptides with semiconductor nanocrystals. Atmaja B; Cha JN; Marshall A; Frank CW Langmuir; 2009 Jan; 25(2):707-15. PubMed ID: 19072205 [TBL] [Abstract][Full Text] [Related]
8. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels. Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681 [TBL] [Abstract][Full Text] [Related]
11. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418 [TBL] [Abstract][Full Text] [Related]
12. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386 [TBL] [Abstract][Full Text] [Related]
13. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Altunbas A; Pochan DJ Top Curr Chem; 2012; 310():135-67. PubMed ID: 21809190 [TBL] [Abstract][Full Text] [Related]
14. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Chu BK; Nguyen HD Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376 [TBL] [Abstract][Full Text] [Related]
15. Multi-membrane hydrogels. Ladet S; David L; Domard A Nature; 2008 Mar; 452(7183):76-9. PubMed ID: 18322531 [TBL] [Abstract][Full Text] [Related]
16. A smart supramolecular hydrogel of N(alpha)-(4-n-alkyloxybenzoyl)-L-histidine exhibiting pH-modulated properties. Patra T; Pal A; Dey J Langmuir; 2010 Jun; 26(11):7761-7. PubMed ID: 20380403 [TBL] [Abstract][Full Text] [Related]
17. De novo design of strand-swapped beta-hairpin hydrogels. Nagarkar RP; Hule RA; Pochan DJ; Schneider JP J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936 [TBL] [Abstract][Full Text] [Related]
18. Adhesion behavior of peritoneal cells on the surface of self-assembled triblock copolymer hydrogels. Tanaka S; Ogura A; Kaneko T; Murata Y; Akashi M Biomacromolecules; 2004; 5(6):2447-55. PubMed ID: 15530062 [TBL] [Abstract][Full Text] [Related]
19. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Yang CY; Song B; Ao Y; Nowak AP; Abelowitz RB; Korsak RA; Havton LA; Deming TJ; Sofroniew MV Biomaterials; 2009 May; 30(15):2881-98. PubMed ID: 19251318 [TBL] [Abstract][Full Text] [Related]
20. Structure and properties of low molecular weight amphiphilic peptide hydrogelators. Mitra RN; Das D; Roy S; Das PK J Phys Chem B; 2007 Dec; 111(51):14107-13. PubMed ID: 18052148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]