These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 12024219)

  • 1. Retraction. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold.
    Altamirano MM; Blackburn JM; Aguayo C; Fersht AR
    Nature; 2002 May; 417(6887):468. PubMed ID: 12024219
    [No Abstract]   [Full Text] [Related]  

  • 2. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold.
    Altamirano MM; Blackburn JM; Aguayo C; Fersht AR
    Nature; 2000 Feb; 403(6770):617-22. PubMed ID: 10688189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of quaternary structure in (beta/alpha)(8)-barrel proteins: evolutionary happenstance or a higher level of structure-function relationships?
    Devenish SR; Gerrard JA
    Org Biomol Chem; 2009 Mar; 7(5):833-9. PubMed ID: 19225662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse engineering the (beta/alpha )8 barrel fold.
    Silverman JA; Balakrishnan R; Harbury PB
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3092-7. PubMed ID: 11248037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of (βα)(8)-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase α-subunit.
    Evran S; Telefoncu A; Sterner R
    Protein Eng Des Sel; 2012 Jun; 25(6):285-93. PubMed ID: 22490958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily.
    Schmidt DM; Mundorff EC; Dojka M; Bermudez E; Ness JE; Govindarajan S; Babbitt PC; Minshull J; Gerlt JA
    Biochemistry; 2003 Jul; 42(28):8387-93. PubMed ID: 12859183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing catalytic activity on an artificial (βα)8-barrel protein designed from identical half-barrels.
    Sperl JM; Rohweder B; Rajendran C; Sterner R
    FEBS Lett; 2013 Sep; 587(17):2798-805. PubMed ID: 23806364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases.
    Song WJ; Yu J; Tezcan FA
    J Am Chem Soc; 2017 Nov; 139(46):16772-16779. PubMed ID: 28992705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and experimental evidence for the evolution of a (beta alpha)8-barrel protein from an ancestral quarter-barrel stabilised by disulfide bonds.
    Richter M; Bosnali M; Carstensen L; Seitz T; Durchschlag H; Blanquart S; Merkl R; Sterner R
    J Mol Biol; 2010 May; 398(5):763-73. PubMed ID: 20363228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary walk between (β/α)(8) barrels: catalytic migration from triosephosphate isomerase to thiamin phosphate synthase.
    Saab-Rincón G; Olvera L; Olvera M; Rudiño-Piñera E; Benites E; Soberón X; Morett E
    J Mol Biol; 2012 Feb; 416(2):255-70. PubMed ID: 22226942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-Barrels Derived from a (β/α)8 Barrel β-Glycosidase Undergo an Activation Process.
    Beton D; Marana SR
    PLoS One; 2015; 10(10):e0139673. PubMed ID: 26431042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases.
    Sharma P; Kaila P; Guptasarma P
    FEBS J; 2016 Dec; 283(23):4340-4356. PubMed ID: 27749025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology?
    Janecek S
    Protein Sci; 1996 Jun; 5(6):1136-43. PubMed ID: 8762144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional innovations in the real-time evolution of new (βα)
    Newton MS; Guo X; Söderholm A; Näsvall J; Lundström P; Andersson DI; Selmer M; Patrick WM
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4727-4732. PubMed ID: 28416687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the role of the (alpha+beta) insertion in the TIM-barrel catalytic domain, regarding the stability and the enzymatic activity of chitinase A from Serratia marcescens.
    Zees AC; Pyrpassopoulos S; Vorgias CE
    Biochim Biophys Acta; 2009 Jan; 1794(1):23-31. PubMed ID: 18973833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase.
    Krause M; Neubauer P; Wierenga RK
    Protein Eng Des Sel; 2015 Jun; 28(6):187-97. PubMed ID: 25767111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evidence for the existence of a stable half-barrel subdomain in the (beta/alpha)8-barrel fold.
    Akanuma S; Yamagishi A
    J Mol Biol; 2008 Oct; 382(2):458-66. PubMed ID: 18674541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold.
    Setiyaputra S; Mackay JP; Patrick WM
    J Mol Biol; 2011 Apr; 408(2):291-303. PubMed ID: 21354426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.
    Goldman AD; Beatty JT; Landweber LF
    J Mol Evol; 2016 Jan; 82(1):17-26. PubMed ID: 26733481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The refined X-ray structure of muconate lactonizing enzyme from Pseudomonas putida PRS2000 at 1.85 A resolution.
    Helin S; Kahn PC; Guha BL; Mallows DG; Goldman A
    J Mol Biol; 1995 Dec; 254(5):918-41. PubMed ID: 7500361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.