These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12024268)
1. Pseudomonas fluorescens DR54 Reduces Sclerotia Formation, Biomass Development, and Disease Incidence of Rhizoctonia solani Causing Damping-Off in Sugar Beet. Thrane C; Nielsen MN; Sørensen J; Olsson S Microb Ecol; 2001 Oct; 42(3):438-445. PubMed ID: 12024268 [TBL] [Abstract][Full Text] [Related]
2. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. Thrane C; Harder Nielsen T ; Neiendam Nielsen M ; Sørensen J; Olsson S FEMS Microbiol Ecol; 2000 Aug; 33(2):139-146. PubMed ID: 10967213 [TBL] [Abstract][Full Text] [Related]
3. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
4. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1021-9. PubMed ID: 17390854 [TBL] [Abstract][Full Text] [Related]
5. Soil suppressiveness to Rhizoctonia solani and microbial diversity. Bakker Y; Van Loon FM; Schneider JH Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155 [TBL] [Abstract][Full Text] [Related]
6. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot. Schroeder KL; Paulitz TC Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081 [TBL] [Abstract][Full Text] [Related]
7. Screening of Pseudomonas and Bacillus isolates for potential biocontrol of the damping-off of bean (Phaseolus coccineus). Peighami-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2009; 74(3):745-8. PubMed ID: 20222559 [TBL] [Abstract][Full Text] [Related]
8. The influence of Bacillus subtilis RB14-C on the development of Rhizoctonia solani and indigenous microorganisms in the soil. Szczech M; Shoda M Can J Microbiol; 2005 May; 51(5):405-11. PubMed ID: 16088336 [TBL] [Abstract][Full Text] [Related]
9. Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere. Johansen A; Olsson S Microb Ecol; 2005 Feb; 49(2):272-81. PubMed ID: 15965726 [TBL] [Abstract][Full Text] [Related]
10. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet. Karimi E; Safaie N; Shams-Baksh M; Mahmoudi B Microbiol Res; 2016 Nov; 192():221-230. PubMed ID: 27664740 [TBL] [Abstract][Full Text] [Related]
11. Influence of Soil Temperature and Matric Potential on Sugar Beet Seedling Colonization and Suppression of Pythium Damping-Off by the Antagonistic Bacteria Pseudomonas fluorescens and Bacillus subtilis. Schmidt CS; Agostini F; Leifert C; Killham K; Mullins CE Phytopathology; 2004 Apr; 94(4):351-63. PubMed ID: 18944111 [TBL] [Abstract][Full Text] [Related]
12. Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of pseudomonas fluorescens isolates from sugar beet rhizosphere. Nielsen MN; Sorensen J; Fels J; Pedersen HC Appl Environ Microbiol; 1998 Oct; 64(10):3563-9. PubMed ID: 9758768 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. Lübeck PS; Hansen M; Sørensen J FEMS Microbiol Ecol; 2000 Jul; 33(1):11-19. PubMed ID: 10922498 [TBL] [Abstract][Full Text] [Related]
14. Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani. Jung WJ; Park RD; Mabood F; Souleimanov A; L Smith D J Microbiol Biotechnol; 2011 Apr; 21(4):379-86. PubMed ID: 21532321 [TBL] [Abstract][Full Text] [Related]
15. Multiple physiological states of a Pseudomonas fluorescens DR54 biocontrol inoculant monitored by a new flow cytometry protocol. Nielsen TH; Sjøholm OR; Sørensen J FEMS Microbiol Ecol; 2009 Mar; 67(3):479-90. PubMed ID: 19159420 [TBL] [Abstract][Full Text] [Related]
16. Biocontrol of Alsudani AA; Raheem Lateef Al-Awsi G Pak J Biol Sci; 2020 Jan; 23(11):1456-1461. PubMed ID: 33274875 [TBL] [Abstract][Full Text] [Related]
17. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. Nielsen TH; Christophersen C; Anthoni U; Sørensen J J Appl Microbiol; 1999 Jul; 87(1):80-90. PubMed ID: 10432590 [TBL] [Abstract][Full Text] [Related]
18. Reaction of selected soybean cultivars to Rhizoctonia root rot and other damping-off disease agents. Amer MA Commun Agric Appl Biol Sci; 2005; 70(3):381-90. PubMed ID: 16637203 [TBL] [Abstract][Full Text] [Related]
19. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related]
20. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet. Bolton MD; Panella L; Campbell L; Khan MF Phytopathology; 2010 Jul; 100(7):689-97. PubMed ID: 20528187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]