These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12026170)

  • 1. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control.
    Fogliano V; Ballio A; Gallo M; Woo S; Scala F; Lorito M
    Mol Plant Microbe Interact; 2002 Apr; 15(4):323-33. PubMed ID: 12026170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol.
    Woo S; Fogliano V; Scala F; Lorito M
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):353-6. PubMed ID: 12448733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination.
    Lorito M; Peterbauer C; Hayes CK; Harman GE
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():623-9. PubMed ID: 8012584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins.
    Dalla Serra M; Fagiuoli G; Nordera P; Bernhart I; Della Volpe C; Di Giorgio D; Ballio A; Menestrina G
    Mol Plant Microbe Interact; 1999 May; 12(5):391-400. PubMed ID: 10226372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of genes and gene products from Trichoderma sp. and Gliocladium sp. for the development of biological pesticides.
    Lorito M; Hayes CK; Zoina A; Scala F; Del Sorbo G; Woo SL; Harman GE
    Mol Biotechnol; 1994 Dec; 2(3):209-17. PubMed ID: 7866877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimycobacterial activity of lipodepsipeptides produced by Pseudomonas syringae pv syringae B359.
    Buber E; Stindl A; Acan NL; Kocagoz T; Zocher R
    Nat Prod Lett; 2002 Dec; 16(6):419-23. PubMed ID: 12462348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syringopeptin SP25A-mediated killing of gram-positive bacteria and the role of teichoic acid d-alanylation.
    Bensaci MF; Takemoto JY
    FEMS Microbiol Lett; 2007 Mar; 268(1):106-11. PubMed ID: 17263852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of bacterial lipodepsipeptides by matrix-assisted laser desorption/ionisation time-of-flight and high-performance liquid chromatography with electrospray mass spectrometry.
    Monti SM; Gallo M; Ferracane R; Borrelli RC; Ritieni A; Greco ML; Graniti A; Fogliano V
    Rapid Commun Mass Spectrom; 2001; 15(8):623-8. PubMed ID: 11312513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungicidal Activities and Mechanisms of Action of Pseudomonas syringae pv. syringae Lipodepsipeptide Syringopeptins 22A and 25A.
    Bensaci MF; Gurnev PA; Bezrukov SM; Takemoto JY
    Front Microbiol; 2011; 2():216. PubMed ID: 22046175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1.
    Donzelli BG; Harman GE
    Appl Environ Microbiol; 2001 Dec; 67(12):5643-7. PubMed ID: 11722918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin.
    Hutchison ML; Gross DC
    Mol Plant Microbe Interact; 1997 Apr; 10(3):347-54. PubMed ID: 9100379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saprophytic Pseudomonas syringae strain M1 of wheat produces cyclic lipodepsipeptides.
    Adetuyi FC; Isogai A; Di Giorgio D; Ballio A; Takemoto JY
    FEMS Microbiol Lett; 1995 Aug; 131(1):63-7. PubMed ID: 7557311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi.
    Schirmböck M; Lorito M; Wang YL; Hayes CK; Arisan-Atac I; Scala F; Harman GE; Kubicek CP
    Appl Environ Microbiol; 1994 Dec; 60(12):4364-70. PubMed ID: 7811076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new syringopeptin produced by bean strains of Pseudomonas syringae pv. syringae.
    Grgurina I; Mariotti F; Fogliano V; Gallo M; Scaloni A; Iacobellis NS; Lo Cantore P; Mannina L; van Axel Castelli V; Greco ML; Graniti A
    Biochim Biophys Acta; 2002 May; 1597(1):81-9. PubMed ID: 12009406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis.
    Scholz-Schroeder BK; Hutchison ML; Grgurina I; Gross DC
    Mol Plant Microbe Interact; 2001 Mar; 14(3):336-48. PubMed ID: 11277431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential fungal inhibition by immobilized hydrolytic enzymes from Trichoderma asperellum.
    Silva BD; Ulhoa CJ; Batista KA; Yamashita F; Fernandes KF
    J Agric Food Chem; 2011 Aug; 59(15):8148-54. PubMed ID: 21726085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes.
    Agner G; Kaulin YA; Gurnev PA; Szabo Z; Schagina LV; Takemoto JY; Blasko K
    Bioelectrochemistry; 2000 Dec; 52(2):161-7. PubMed ID: 11129239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae.
    Sorensen KN; Kim KH; Takemoto JY
    Antimicrob Agents Chemother; 1996 Dec; 40(12):2710-3. PubMed ID: 9124827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species.
    Sanz L; Montero M; Grondona I; Vizcaíno JA; Llobell A; Hermosa R; Monte E
    Curr Genet; 2004 Nov; 46(5):277-86. PubMed ID: 15480677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of an endochitinase gene (ThEn-42) in Trichoderma atroviride for increased production of antifungal enzymes and enhanced antagonist action against pathogenic fungi.
    Deng S; Lorito M; Penttilä M; Harman GE
    Appl Biochem Biotechnol; 2007 Jul; 142(1):81-94. PubMed ID: 18025571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.