BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12026988)

  • 1. Predicting the fate of sediment and pollutants in river floodplains.
    Malmon DV; Dunne T; Reneau SL
    Environ Sci Technol; 2002 May; 36(9):2026-32. PubMed ID: 12026988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using ²¹⁰Pb measurements to estimate sedimentation rates on river floodplains.
    Du P; Walling DE
    J Environ Radioact; 2012 Jan; 103(1):59-75. PubMed ID: 22036160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Part I: Integrated water quality management: river basin approach. Geochemical techniques on contaminated sediments--river basin view.
    Förstner U
    Environ Sci Pollut Res Int; 2003; 10(1):58-68. PubMed ID: 12635960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France).
    Dhivert E; Grosbois C; Rodrigues S; Desmet M
    Sci Total Environ; 2015 Feb; 505():121-36. PubMed ID: 25310887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A geomorphologist's criticism of the engineering approach to channelization of gravel-bed rivers: case study of the Raba River, Polish Carpathians.
    Wyzga B
    Environ Manage; 2001 Sep; 28(3):341-58. PubMed ID: 11531237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Background radioactivity in sediments near Los Alamos, New Mexico.
    McLin SG
    Sci Total Environ; 2004 Jul; 328(1-3):143-59. PubMed ID: 15207580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.
    Smith TB; Owens PN
    Sci Total Environ; 2014 Oct; 496():435-442. PubMed ID: 25105754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins.
    Wilkinson SN; Dougall C; Kinsey-Henderson AE; Searle RD; Ellis RJ; Bartley R
    Sci Total Environ; 2014 Jan; 468-469():1210-24. PubMed ID: 23968738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of spatial variation of cesium-137 in small catchments.
    van der Perk M; Slávik O; Fulajtár E
    J Environ Qual; 2002; 31(6):1930-9. PubMed ID: 12469843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin.
    Noël V; Boye K; Kukkadapu RK; Bone S; Lezama Pacheco JS; Cardarelli E; Janot N; Fendorf S; Williams KH; Bargar JR
    Sci Total Environ; 2017 Dec; 603-604():663-675. PubMed ID: 28359569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers.
    Lair GJ; Zehetner F; Fiebig M; Gerzabek MH; van Gestel CA; Hein T; Hohensinner S; Hsu P; Jones KC; Jordan G; Koelmans AA; Poot A; Slijkerman DM; Totsche KU; Bondar-Kunze E; Barth JA
    Environ Pollut; 2009 Dec; 157(12):3336-46. PubMed ID: 19604610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for predicting sediment-water partition of toxic chemicals in aquatic environments.
    Shimazu H; Ohnishi E; Ozaki N; Fukushima T; Nakasugi O
    Water Sci Technol; 2002; 46(11-12):437-42. PubMed ID: 12523791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California.
    Springborn M; Singer MB; Dunne T
    Sci Total Environ; 2011 Dec; 412-413():203-13. PubMed ID: 22078330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.
    Jiongxin X
    Environ Manage; 2004 May; 33(5):637-53. PubMed ID: 15503385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.
    Gao JH; Jia J; Kettner AJ; Xing F; Wang YP; Xu XN; Yang Y; Zou XQ; Gao S; Qi S; Liao F
    Sci Total Environ; 2014 May; 481():542-53. PubMed ID: 24631617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.
    Ouyang W; Hao F; Skidmore AK; Toxopeus AG
    Sci Total Environ; 2010 Dec; 409(2):396-403. PubMed ID: 21071065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enduring legacy of a toxic fan via episodic redistribution of California gold mining debris.
    Singer MB; Aalto R; James LA; Kilham NE; Higson JL; Ghoshal S
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18436-41. PubMed ID: 24167273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soils, water quality, and watershed size: interactions in the Maumee and Sandusky river basins of northwestern Ohio.
    Calhoun FG; Baker DB; Slater BK
    J Environ Qual; 2002; 31(1):47-53. PubMed ID: 11837443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and storage of uranium, and its decay products, in floodplain sediments.
    Millward GE; Blake WH
    Environ Pollut; 2023 May; 324():121356. PubMed ID: 36858097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence.
    Telmer K; Costa M; Simões Angélica R; Araujo ES; Maurice Y
    J Environ Manage; 2006 Oct; 81(2):101-13. PubMed ID: 16824670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.