These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 12027009)

  • 21. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase.
    Duarte AM; Wolfs CJ; van Nuland NA; Harrison MA; Findlay JB; van Mierlo CP; Hemminga MA
    Biochim Biophys Acta; 2007 Feb; 1768(2):218-27. PubMed ID: 16962559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interacting helical surfaces of the transmembrane segments of subunits a and c' of the yeast V-ATPase defined by disulfide-mediated cross-linking.
    Kawasaki-Nishi S; Nishi T; Forgac M
    J Biol Chem; 2003 Oct; 278(43):41908-13. PubMed ID: 12917411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformation of a peptide encompassing the proton translocation channel of vacuolar H(+)-ATPase.
    Vos WL; Vermeer LS; Hemminga MA
    Biophys J; 2007 Jan; 92(1):138-46. PubMed ID: 17040980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase.
    Toei M; Toei S; Forgac M
    J Biol Chem; 2011 Oct; 286(40):35176-86. PubMed ID: 21832060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure of the V(1)-ATPase determined by three-dimensional electron microscopy of single particles.
    Radermacher M; Ruiz T; Wieczorek H; Grüber G
    J Struct Biol; 2001 Jul; 135(1):26-37. PubMed ID: 11562163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy.
    Wilkens S; Forgac M
    J Biol Chem; 2001 Nov; 276(47):44064-8. PubMed ID: 11533034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Helical interactions and membrane disposition of the 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase analyzed by cysteine replacement mutagenesis.
    Harrison MA; Murray J; Powell B; Kim YI; Finbow ME; Findlay JB
    J Biol Chem; 1999 Sep; 274(36):25461-70. PubMed ID: 10464277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane assembly of the 16-kDa proteolipid channel from Nephrops norvegicus studied by relaxation enhancements in spin-label ESR.
    Páli T; Finbow ME; Marsh D
    Biochemistry; 1999 Oct; 38(43):14311-9. PubMed ID: 10572006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A structure-based model for the 16 kDa membrane sector of the vacuolar H(+)-ATPase.
    Findlay JB; Finbow ME; Jones PC; Kim YI; Harrison MA; Hughes G
    Biochem Soc Trans; 1997 Aug; 25(3):1107-13. PubMed ID: 9388608
    [No Abstract]   [Full Text] [Related]  

  • 30. Membrane insertion and assembly of ductin: a polytopic channel with dual orientations.
    Dunlop J; Jones PC; Finbow ME
    EMBO J; 1995 Aug; 14(15):3609-16. PubMed ID: 7641680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of lipid-accessible sites on the nephrops 16-kDa proteolipid incorporated into a hybrid vacuolar H(+)-ATPase: site-directed labeling with N-(1-Pyrenyl)cyclohexylcarbodiimide and fluorescence quenching analysis.
    Harrison M; Powell B; Finbow ME; Findlay JB
    Biochemistry; 2000 Jun; 39(25):7531-7. PubMed ID: 10858302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase.
    Finbow ME; Eliopoulos EE; Jackson PJ; Keen JN; Meagher L; Thompson P; Jones P; Findlay JB
    Protein Eng; 1992 Jan; 5(1):7-15. PubMed ID: 1378613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function of the vacuolar H+-ATPase: moving from low-resolution models to high-resolution structures.
    Harrison M; Durose L; Song CF; Barratt E; Trinick J; Jones R; Findlay JB
    J Bioenerg Biomembr; 2003 Aug; 35(4):337-45. PubMed ID: 14635779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Segment TM7 from the cytoplasmic hemi-channel from VO-H+-V-ATPase includes a flexible region that has a potential role in proton translocation.
    Duarte AM; de Jong ER; Wechselberger R; van Mierlo CP; Hemminga MA
    Biochim Biophys Acta; 2007 Sep; 1768(9):2263-70. PubMed ID: 17573038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus--revealed by EPR spectroscopy.
    Páli T; Finbow ME; Marsh D
    Biochim Biophys Acta; 2006 Feb; 1758(2):206-12. PubMed ID: 16545340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the ductin channel.
    Finbow ME; Pitts JD
    Biosci Rep; 1998 Dec; 18(6):287-97. PubMed ID: 10357172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.
    Arthur CP; Stowell MH
    Structure; 2007 Jun; 15(6):707-14. PubMed ID: 17562317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for a common structure for a class of membrane channels.
    Holzenburg A; Jones PC; Franklin T; Pali T; Heimburg T; Marsh D; Findlay JB; Finbow ME
    Eur J Biochem; 1993 Apr; 213(1):21-30. PubMed ID: 7682941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model for the resistance of the proton channel formed by the proteolipid of ATPase.
    Schulten Z; Schulten K
    Eur Biophys J; 1985; 11(3):149-55. PubMed ID: 2580699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A protein chemical approach to channel structure and function: the proton channel of the vacuolar H(+)-ATPase.
    Findlay JB; Harrison MA
    Novartis Found Symp; 2002; 245():207-18; discussion 218-22, 261-4. PubMed ID: 12027009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.