BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12027013)

  • 1. The architecture of a water-selective pore in the lipid bilayer visualized by electron crystallography in vitreous ice.
    Mitra AK; Ren G; Reddy VS; Cheng A; Froger A
    Novartis Found Symp; 2002; 245():33-46; discussion 46-50; 165-8. PubMed ID: 12027013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of a water-selective pore by electron crystallography in vitreous ice.
    Ren G; Reddy VS; Cheng A; Melnyk P; Mitra AK
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1398-403. PubMed ID: 11171962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional fold of the human AQP1 water channel determined at 4 A resolution by electron crystallography of two-dimensional crystals embedded in ice.
    Ren G; Cheng A; Reddy V; Melnyk P; Mitra AK
    J Mol Biol; 2000 Aug; 301(2):369-87. PubMed ID: 10926515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry.
    Saparov SM; Kozono D; Rothe U; Agre P; Pohl P
    J Biol Chem; 2001 Aug; 276(34):31515-20. PubMed ID: 11410596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer.
    Zhu F; Tajkhorshid E; Schulten K
    FEBS Lett; 2001 Aug; 504(3):212-8. PubMed ID: 11532456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional organization of a human water channel.
    Cheng A; van Hoek AN; Yeager M; Verkman AS; Mitra AK
    Nature; 1997 Jun; 387(6633):627-30. PubMed ID: 9177354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants of water permeation through aquaporin-1.
    Murata K; Mitsuoka K; Hirai T; Walz T; Agre P; Heymann JB; Engel A; Fujiyoshi Y
    Nature; 2000 Oct; 407(6804):599-605. PubMed ID: 11034202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of water-specific transport through the AQP1 water channel.
    Sui H; Han BG; Lee JK; Walian P; Jap BK
    Nature; 2001 Dec 20-27; 414(6866):872-8. PubMed ID: 11780053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The three-dimensional structure of aquaporin-1.
    Walz T; Hirai T; Murata K; Heymann JB; Mitsuoka K; Fujiyoshi Y; Smith BL; Agre P; Engel A
    Nature; 1997 Jun; 387(6633):624-7. PubMed ID: 9177353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water transport in AQP0 aquaporin: molecular dynamics studies.
    Han BG; Guliaev AB; Walian PJ; Jap BK
    J Mol Biol; 2006 Jul; 360(2):285-96. PubMed ID: 16756992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the water channel AqpZ from Escherichia coli revealed by electron crystallography.
    Ringler P; Borgnia MJ; Stahlberg H; Maloney PC; Agre P; Engel A
    J Mol Biol; 1999 Sep; 291(5):1181-90. PubMed ID: 10518953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface topographies at subnanometer-resolution reveal asymmetry and sidedness of aquaporin-1.
    Walz T; Tittmann P; Fuchs KH; Müller DJ; Smith BL; Agre P; Gross H; Engel A
    J Mol Biol; 1996 Dec; 264(5):907-18. PubMed ID: 9000620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals.
    Gonen T; Cheng Y; Sliz P; Hiroaki Y; Fujiyoshi Y; Harrison SC; Walz T
    Nature; 2005 Dec; 438(7068):633-8. PubMed ID: 16319884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projection map of aquaporin-1 determined by electron crystallography.
    Walz T; Typke D; Smith BL; Agre P; Engel A
    Nat Struct Biol; 1995 Sep; 2(9):730-2. PubMed ID: 7552740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer.
    Mitsuoka K; Murata K; Walz T; Hirai T; Agre P; Heymann JB; Engel A; Fujiyoshi Y
    J Struct Biol; 1999 Dec; 128(1):34-43. PubMed ID: 10600556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and structure of a putative Ca2+-binding domain at the C terminus of AQP1.
    Fotiadis D; Suda K; Tittmann P; Jenö P; Philippsen A; Müller DJ; Gross H; Engel A
    J Mol Biol; 2002 May; 318(5):1381-94. PubMed ID: 12083525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projection structure of the CHIP28 water channel in lipid bilayer membranes at 12-A resolution.
    Mitra AK; Yeager M; van Hoek AN; Wiener MC; Verkman AS
    Biochemistry; 1994 Nov; 33(43):12735-40. PubMed ID: 7524655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water channel structures analysed by electron crystallography.
    Tani K; Fujiyoshi Y
    Biochim Biophys Acta; 2014 May; 1840(5):1605-13. PubMed ID: 24120524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of beta-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process.
    Jang H; Zheng J; Nussinov R
    Biophys J; 2007 Sep; 93(6):1938-49. PubMed ID: 17526580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of aquaporin water channels.
    Verkman AS; Mitra AK
    Am J Physiol Renal Physiol; 2000 Jan; 278(1):F13-28. PubMed ID: 10644652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.