These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370 [TBL] [Abstract][Full Text] [Related]
5. Electrorheological Behavior of Suspensions of Polyimide-Based on the Sodium Salt of 2,5-Diaminobenzenesulfonic Acid. Semenov N; Danilin A; Karnet Y; Kelbysheva E Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32365561 [TBL] [Abstract][Full Text] [Related]
6. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions. Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050 [TBL] [Abstract][Full Text] [Related]
7. Electrorheological suspensions of laponite in oil: rheometry studies. Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081 [TBL] [Abstract][Full Text] [Related]
9. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation. Ko YG; Shin SS; Choi US; Park YS; Woo JW ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802 [TBL] [Abstract][Full Text] [Related]
10. The electrorheological behavior of suspensions based on molten-salt synthesized lithium titanate nanoparticles and their core-shell titanate/urea analogues. Plachy T; Mrlik M; Kozakova Z; Suly P; Sedlacik M; Pavlinek V; Kuritka I ACS Appl Mater Interfaces; 2015 Feb; 7(6):3725-31. PubMed ID: 25633327 [TBL] [Abstract][Full Text] [Related]
11. Negative electrorheological behavior in suspensions of inorganic particles. Ramos-Tejada MM; Arroyo FJ; Delgado AV Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556 [TBL] [Abstract][Full Text] [Related]
12. Switchable electrorheological activity of polyacrylonitrile microspheres by thermal treatment: from negative to positive. Do T; Ko YG; Chun Y; Jung Y; Choi US; Park YS; Woo JW Soft Matter; 2018 Nov; 14(44):8912-8923. PubMed ID: 30320320 [TBL] [Abstract][Full Text] [Related]
13. Electrorheological Effect in Suspension Composed of Starch Powder and Silicone Oil. Negita K; Itou H; Yakou T J Colloid Interface Sci; 1999 Jan; 209(1):251-254. PubMed ID: 9878161 [TBL] [Abstract][Full Text] [Related]
14. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions. Di K; Zhu Y; Yang X; Li C J Colloid Interface Sci; 2006 Feb; 294(2):499-503. PubMed ID: 16125189 [TBL] [Abstract][Full Text] [Related]
16. Modeling and analysis of electrorheological suspensions in shear flow. Seo YP; Seo Y Langmuir; 2012 Feb; 28(6):3077-84. PubMed ID: 22233263 [TBL] [Abstract][Full Text] [Related]
17. Cellulose-Based Smart Fluids under Applied Electric Fields. Choi K; Gao CY; Nam JD; Choi HJ Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891966 [TBL] [Abstract][Full Text] [Related]
18. Effect of surface properties on the electrorheological response of hematite/silicone oil dispersions. Erol O; Ramos-Tejada MDM; Unal HI; Delgado ÁV J Colloid Interface Sci; 2013 Feb; 392():75-82. PubMed ID: 23116854 [TBL] [Abstract][Full Text] [Related]
19. Recent development of electro-responsive smart electrorheological fluids. Dong YZ; Seo Y; Choi HJ Soft Matter; 2019 Apr; 15(17):3473-3486. PubMed ID: 30968927 [TBL] [Abstract][Full Text] [Related]
20. Microstructure-Confined Mechanical and Electric Properties of the Electrorheological Fluids under the Oscillatory Mechanical Field. Hao T; Xu Y J Colloid Interface Sci; 1997 Jan; 185(2):324-31. PubMed ID: 9028885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]