These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 12027169)

  • 1. Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation.
    Savović S; Djordjevich A
    Appl Opt; 2002 May; 41(15):2826-30. PubMed ID: 12027169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of Mode Coupling in Step-Index Multimode Microstructured Polymer Optical Fibers by the Langevin Equation.
    Savović S; Li L; Savović I; Djordjevich A; Min R
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of mode coupling in strained and unstrained multimode step-index POFs using the Langevin equation.
    Savović S; Aidinis K; Djordjevich A; Min R
    Heliyon; 2023 Jul; 9(7):e18156. PubMed ID: 37539129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of bending on power distribution in step-index plastic optical fibers and the calculation of bending loss.
    Kovacević MS; Nikezić D
    Appl Opt; 2006 Sep; 45(26):6675-81. PubMed ID: 16926896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force.
    Magdziarz M; Weron A; Klafter J
    Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical and Numerical Treatments of Conservative Diffusions and the Burgers Equation.
    Prodanov D
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.
    Giuggioli L; Neu Z
    Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180131. PubMed ID: 31329064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic theory of an optical vortex in nonlinear media.
    Kuratsuji H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013202. PubMed ID: 23944571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics.
    Colmenares PJ
    Phys Rev E; 2018 May; 97(5-1):052126. PubMed ID: 29906902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise.
    Lin L; Duan J; Wang X; Zhang Y
    Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises.
    Méndez V; Denisov SI; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear stochastic modelling with Langevin regression.
    Callaham JL; Loiseau JC; Rigas G; Brunton SL
    Proc Math Phys Eng Sci; 2021 Jun; 477(2250):20210092. PubMed ID: 35153564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions.
    Dornic I; Chaté H; Muñoz MA
    Phys Rev Lett; 2005 Mar; 94(10):100601. PubMed ID: 15783467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces.
    Henry BI; Langlands TA; Straka P
    Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing generalized Langevin equations and generalized Fokker-Planck equations.
    Darve E; Solomon J; Kia A
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10884-9. PubMed ID: 19549838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.