BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12027902)

  • 1. Interaction between p21-activated protein kinase and Rac during differentiation of HL-60 human promyelocytic leukemia cell induced by all-trans-retinoic acid.
    Nisimoto Y; Ogawa H
    Eur J Biochem; 2002 May; 269(10):2622-9. PubMed ID: 12027902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a variant HL60 cell line defective in the activation of the NADPH oxidase by phorbol myristate acetate.
    Tardif M; Rabiet MJ; Christophe T; Milcent MD; Boulay F
    J Immunol; 1998 Dec; 161(12):6885-95. PubMed ID: 9862721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis.
    Roepstorff K; Rasmussen I; Sawada M; Cudre-Maroux C; Salmon P; Bokoch G; van Deurs B; Vilhardt F
    J Biol Chem; 2008 Mar; 283(12):7983-93. PubMed ID: 18160398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of arachidonic acid and guanosine 5'-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system.
    Sawai T; Asada M; Nunoi H; Matsuda I; Ando S; Sasaki T; Kaibuchi K; Takai Y; Katayama K
    Biochem Biophys Res Commun; 1993 Aug; 195(1):264-9. PubMed ID: 8395827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and characteristics of stimuli-dependent ROS generation in undifferentiated HL-60 cells.
    Muranaka S; Fujita H; Fujiwara T; Ogino T; Sato EF; Akiyama J; Imada I; Inoue M; Utsumi K
    Antioxid Redox Signal; 2005; 7(9-10):1367-76. PubMed ID: 16115042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase.
    Heyworth PG; Knaus UG; Xu X; Uhlinger DJ; Conroy L; Bokoch GM; Curnutte JT
    Mol Biol Cell; 1993 Mar; 4(3):261-9. PubMed ID: 8387355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repression of rac2 mRNA expression by Anaplasma phagocytophila is essential to the inhibition of superoxide production and bacterial proliferation.
    Carlyon JA; Chan WT; Galán J; Roos D; Fikrig E
    J Immunol; 2002 Dec; 169(12):7009-18. PubMed ID: 12471136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of cytosolic activation factors for NADPH oxidase in HL-60 leukemic cells.
    Seifert R; Jungblut P; Schultz G
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1109-17. PubMed ID: 2472788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages.
    Pick E; Gorzalczany Y; Engel S
    Eur J Biochem; 1993 Oct; 217(1):441-55. PubMed ID: 8223583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rac and PI3 kinase mediate endothelial cell-reactive oxygen species generation during normoxic lung ischemia.
    Zhang Q; Chatterjee S; Wei Z; Liu WD; Fisher AB
    Antioxid Redox Signal; 2008 Apr; 10(4):679-89. PubMed ID: 18162054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A key role for Rac and Pak signaling in neutrophil extracellular traps (NETs) formation defines a new potential therapeutic target.
    Gavillet M; Martinod K; Renella R; Wagner DD; Williams DA
    Am J Hematol; 2018 Feb; 93(2):269-276. PubMed ID: 29124783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils.
    Prigmore E; Ahmed S; Best A; Kozma R; Manser E; Segal AW; Lim L
    J Biol Chem; 1995 May; 270(18):10717-22. PubMed ID: 7738010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity.
    Diekmann D; Abo A; Johnston C; Segal AW; Hall A
    Science; 1994 Jul; 265(5171):531-3. PubMed ID: 8036496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoelectron microscopy shows a clustered distribution of NADPH oxidase components in the human neutrophil plasma membrane.
    Wientjes FB; Segal AW; Hartwig JH
    J Leukoc Biol; 1997 Mar; 61(3):303-12. PubMed ID: 9060453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase-derived reactive oxygen species are involved in the HL-60 cell monocytic differentiation induced by isoliquiritigenin.
    Chen H; Zhang B; Yao Y; Chen N; Chen X; Tian H; Wang Z; Zheng Q
    Molecules; 2012 Nov; 17(11):13424-38. PubMed ID: 23147401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex.
    Zhao X; Carnevale KA; Cathcart MK
    J Biol Chem; 2003 Oct; 278(42):40788-92. PubMed ID: 12912997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors.
    Knaus UG; Morris S; Dong HJ; Chernoff J; Bokoch GM
    Science; 1995 Jul; 269(5221):221-3. PubMed ID: 7618083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins.
    Kwong CH; Malech HL; Rotrosen D; Leto TL
    Biochemistry; 1993 Jun; 32(21):5711-7. PubMed ID: 8504089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex.
    Di-Poï N; Fauré J; Grizot S; Molnár G; Pick E; Dagher MC
    Biochemistry; 2001 Aug; 40(34):10014-22. PubMed ID: 11513579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired NADPH oxidase activity in Rac2-deficient murine neutrophils does not result from defective translocation of p47phox and p67phox and can be rescued by exogenous arachidonic acid.
    Kim C; Dinauer MC
    J Leukoc Biol; 2006 Jan; 79(1):223-34. PubMed ID: 16275890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.