These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12027956)

  • 1. Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes.
    Grieshaber S; Swanson JA; Hackstadt T
    Cell Microbiol; 2002 May; 4(5):273-83. PubMed ID: 12027956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells.
    van Ooij C; Apodaca G; Engel J
    Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 4. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process.
    Grieshaber SS; Grieshaber NA; Hackstadt T
    J Cell Sci; 2003 Sep; 116(Pt 18):3793-802. PubMed ID: 12902405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis.
    Heinzen RA; Scidmore MA; Rockey DD; Hackstadt T
    Infect Immun; 1996 Mar; 64(3):796-809. PubMed ID: 8641784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated.
    Yang C; Starr T; Song L; Carlson JH; Sturdevant GL; Beare PA; Whitmire WM; Caldwell HD
    mBio; 2015 Nov; 6(6):e01648-15. PubMed ID: 26556273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds.
    Heinzen RA; Hackstadt T
    Infect Immun; 1997 Mar; 65(3):1088-94. PubMed ID: 9038320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells.
    Schramm N; Bagnell CR; Wyrick PB
    Infect Immun; 1996 Apr; 64(4):1208-14. PubMed ID: 8606080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.
    Scidmore MA; Rockey DD; Fischer ER; Heinzen RA; Hackstadt T
    Infect Immun; 1996 Dec; 64(12):5366-72. PubMed ID: 8945589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection.
    Scidmore MA; Fischer ER; Hackstadt T
    Infect Immun; 2003 Feb; 71(2):973-84. PubMed ID: 12540580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.
    Hackstadt T; Scidmore MA; Rockey DD
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4877-81. PubMed ID: 7761416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chlamydial inclusion: escape from the endocytic pathway.
    Fields KA; Hackstadt T
    Annu Rev Cell Dev Biol; 2002; 18():221-45. PubMed ID: 12142274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.
    Moore ER; Mead DJ; Dooley CA; Sager J; Hackstadt T
    Microbiology (Reading); 2011 Mar; 157(Pt 3):830-838. PubMed ID: 21109560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds.
    Kumar Y; Valdivia RH
    Cell Host Microbe; 2008 Aug; 4(2):159-69. PubMed ID: 18692775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion.
    Scidmore MA; Fischer ER; Hackstadt T
    J Cell Biol; 1996 Jul; 134(2):363-74. PubMed ID: 8707822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells.
    Wolf K; Hackstadt T
    Cell Microbiol; 2001 Mar; 3(3):145-52. PubMed ID: 11260137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and intracellular trafficking pattern of vacuoles containing Chlamydia pneumoniae in human epithelial cells.
    Al-Younes HM; Rudel T; Meyer TF
    Cell Microbiol; 1999 Nov; 1(3):237-47. PubMed ID: 11207556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.