BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12028580)

  • 1. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.
    García-Borrón JC; Solano F
    Pigment Cell Res; 2002 Jun; 15(3):162-73. PubMed ID: 12028580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in Mammalian tyrosinase. Implications to the catalytic cycle.
    Olivares C; García-Borrón JC; Solano F
    Biochemistry; 2002 Jan; 41(2):679-86. PubMed ID: 11781109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M
    J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation.
    Fujieda N; Yabuta S; Ikeda T; Oyama T; Muraki N; Kurisu G; Itoh S
    J Biol Chem; 2013 Jul; 288(30):22128-40. PubMed ID: 23749993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities.
    Noh H; Lee SJ; Jo HJ; Choi HW; Hong S; Kong KH
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):726-732. PubMed ID: 32180482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins.
    Lai X; Wichers HJ; Soler-Lopez M; Dijkstra BW
    Chemistry; 2018 Jan; 24(1):47-55. PubMed ID: 29052256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.
    Hassan M; Abbas Q; Raza H; Moustafa AA; Seo SY
    Mol Biosyst; 2017 Jul; 13(8):1534-1544. PubMed ID: 28640309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F; McDougall C; Degnan BM
    BMC Evol Biol; 2013 May; 13():96. PubMed ID: 23634722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.
    Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.
    Agarwal P; Singh J; Singh RP
    Appl Biochem Biotechnol; 2017 May; 182(1):1-15. PubMed ID: 27826808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT; Rozeboom HJ; Weijn A; Mes JJ; Fusetti F; Wichers HJ; Dijkstra BW
    Biochemistry; 2011 Jun; 50(24):5477-86. PubMed ID: 21598903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites.
    Albada HB; Soulimani F; Weckhuysen BM; Liskamp RM
    Chem Commun (Camb); 2007 Dec; (46):4895-7. PubMed ID: 18361361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A
    J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M
    Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The catalytic cycle of catechol oxidase.
    Siegbahn PE
    J Biol Inorg Chem; 2004 Jul; 9(5):577-90. PubMed ID: 15185133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.