BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12028636)

  • 1. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.
    Neuman DG; Stauffer PR; Jacobsen S; Rossetto F
    Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation.
    Rossetto F; Diederich CJ; Stauffer PR
    Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators. Specific absorption rate.
    Rossetto F; Stauffer PR
    IEEE Trans Biomed Eng; 1999 Nov; 46(11):1310-9. PubMed ID: 10582416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas.
    Rossetto F; Stauffer PR; Manfrini V; Diederich CJ; Biffi Gentili G
    Int J Hyperthermia; 1998; 14(6):553-71. PubMed ID: 9886662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence.
    Arunachalam K; Maccarini PF; Craciunescu OI; Schlorff JL; Stauffer PR
    Phys Med Biol; 2010 Apr; 55(7):1949-69. PubMed ID: 20224154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FDTD simulations of Clini-Therm applicators on inhomogeneous planar tissue models.
    Chan KW; McDougall JA; Chou CK
    Int J Hyperthermia; 1995; 11(6):809-20. PubMed ID: 8586902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain.
    Gentili GB; Leoncini M; Trembly BS; Schweizer SE
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):973-80. PubMed ID: 8582727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia.
    Johnson JE; Neuman DG; Maccarini PF; Juang T; Stauffer PR; Turner P
    Int J Hyperthermia; 2006 Sep; 22(6):475-90. PubMed ID: 16971368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A variable microwave array attenuator for use with single-element waveguide applicators.
    Sherar MD; Clark H; Cooper B; Kumaradas J; Liu FF
    Int J Hyperthermia; 1994; 10(5):723-31. PubMed ID: 7806927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
    Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J
    Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave applicator for hyperthermia treatment on in vivo melanoma model.
    Togni P; Vrba J; Vannucci L
    Med Biol Eng Comput; 2010 Mar; 48(3):285-92. PubMed ID: 20033789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.