These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 12028763)

  • 41. Range of motion in the avian wing is strongly associated with flight behavior and body mass.
    Baliga VB; Szabo I; Altshuler DL
    Sci Adv; 2019 Oct; 5(10):eaaw6670. PubMed ID: 31681840
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds.
    Spedding GR; Rosén M; Hedenström A
    J Exp Biol; 2003 Jul; 206(Pt 14):2313-44. PubMed ID: 12796450
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexibility in flight behaviour of barn swallows (Hirundo rustica) and house martins (Delichon urbica) tested in a wind tunnel.
    Bruderer L; Liechti F; Bilo D
    J Exp Biol; 2001 Apr; 204(Pt 8):1473-84. PubMed ID: 11273808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flight costs of long, sexually selected tails in hummingbirds.
    Clark CJ; Dudley R
    Proc Biol Sci; 2009 Jun; 276(1664):2109-15. PubMed ID: 19324747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Avoiding topsy-turvy: how Anna's hummingbirds (
    Badger MA; Wang H; Dudley R
    J Exp Biol; 2019 Feb; 222(Pt 3):. PubMed ID: 30718291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Raptor wing morphing with flight speed.
    Cheney JA; Stevenson JPJ; Durston NE; Maeda M; Song J; Megson-Smith DA; Windsor SP; Usherwood JR; Bomphrey RJ
    J R Soc Interface; 2021 Jul; 18(180):20210349. PubMed ID: 34255986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.
    Clark CJ; Prum RO
    J Exp Biol; 2015 Nov; 218(Pt 21):3520-7. PubMed ID: 26385327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HOW TO COMPENSATE FOR COSTLY SEXUALLY SELECTED TAILS: THE ORIGIN OF SEXUALLY DIMORPHIC WINGS IN LONG-TAILED BIRDS.
    Balmford A; Jones IL; Thomas ALR
    Evolution; 1994 Aug; 48(4):1062-1070. PubMed ID: 28564484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The flight apparatus of migratory and sedentary individuals of a partially migratory songbird species.
    Fudickar AM; Partecke J
    PLoS One; 2012; 7(12):e51920. PubMed ID: 23284817
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aero-optimum hovering kinematics.
    Nabawy MR; Crowther WJ
    Bioinspir Biomim; 2015 Aug; 10(4):044002. PubMed ID: 26248884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A potential role for bat tail membranes in flight control.
    Gardiner JD; Dimitriadis G; Codd JR; Nudds RL
    PLoS One; 2011 Mar; 6(3):e18214. PubMed ID: 21479137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Beyond robins: aerodynamic analyses of animal flight.
    Hedenström A; Spedding G
    J R Soc Interface; 2008 Jun; 5(23):595-601. PubMed ID: 18397865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative power curves in bird flight.
    Tobalske BW; Hedrick TL; Dial KP; Biewener AA
    Nature; 2003 Jan; 421(6921):363-6. PubMed ID: 12540899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.