These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12029054)

  • 1. Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase.
    Frigaard NU; Voigt GD; Bryant DA
    J Bacteriol; 2002 Jun; 184(12):3368-76. PubMed ID: 12029054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum.
    Frigaard NU; Li H; Martinsson P; Das SK; Frank HA; Aartsma TJ; Bryant DA
    Photosynth Res; 2005 Nov; 86(1-2):101-11. PubMed ID: 16172929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes.
    Frigaard NU; Li H; Milks KJ; Bryant DA
    J Bacteriol; 2004 Feb; 186(3):646-53. PubMed ID: 14729689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction of perfluoroalkyl chain into the esterifying moiety of bacteriochlorophyll c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by pigment biosynthesis.
    Saga Y; Yamashita H; Hirota K
    Bioorg Med Chem; 2016 Sep; 24(18):4165-4170. PubMed ID: 27427396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a.
    Pedersen MØ; Pham L; Steensgaard DB; Miller M
    Biochemistry; 2008 Feb; 47(5):1435-41. PubMed ID: 18177020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriochlorophyllide c C-8(2) and C-12(1) methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum.
    Gomez Maqueo Chew A; Frigaard NU; Bryant DA
    J Bacteriol; 2007 Sep; 189(17):6176-84. PubMed ID: 17586634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f.
    Orf GS; Tank M; Vogl K; Niedzwiedzki DM; Bryant DA; Blankenship RE
    Biochim Biophys Acta; 2013 Apr; 1827(4):493-501. PubMed ID: 23353102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling.
    Montaño GA; Bowen BP; LaBelle JT; Woodbury NW; Pizziconi VB; Blankenship RE
    Biophys J; 2003 Oct; 85(4):2560-5. PubMed ID: 14507718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum.
    Savikhin S; van Noort PI; Zhu Y; Lin S; Blankenship RE; Struve WS
    Chem Phys; 1995 May; 194(2-3):245-58. PubMed ID: 11540594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria.
    Frigaard NU; Bryant DA
    Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: the chlorosome protein CsmA is required for viability but CsmC is dispensable.
    Chung S; Shen G; Ormerod J; Bryant DA
    FEMS Microbiol Lett; 1998 Jul; 164(2):353-61. PubMed ID: 9682485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum.
    Wu HM; Rätsep M; Young CS; Jankowiak R; Blankenship RE; Small GJ
    Biophys J; 2000 Sep; 79(3):1561-72. PubMed ID: 10969017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a.
    Bryant DA; Vassilieva EV; Frigaard NU; Li H
    Biochemistry; 2002 Dec; 41(48):14403-11. PubMed ID: 12450407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of unnatural bacteriochlorophyll c derivatives esterified with α,ω-diols in the green sulfur photosynthetic bacterium Chlorobaculum tepidum.
    Nishimori R; Mizoguchi T; Tamiaki H; Kashimura S; Saga Y
    Biochemistry; 2011 Sep; 50(36):7756-64. PubMed ID: 21846125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria.
    Pedersen MØ; Linnanto J; Frigaard NU; Nielsen NC; Miller M
    Photosynth Res; 2010 Jun; 104(2-3):233-43. PubMed ID: 20077007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy.
    van Rossum BJ; Steensgaard DB; Mulder FM; Boender GJ; Schaffner K; Holzwarth AR; deGroot HJ
    Biochemistry; 2001 Feb; 40(6):1587-95. PubMed ID: 11327817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus.
    Savikhin S; Zhu Y; Blankenship RE; Struve WS
    J Phys Chem; 1996 Feb; 100(9):3320-2. PubMed ID: 11539413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria.
    Saga Y; Shibata Y; Itoh S; Tamiaki H
    J Phys Chem B; 2007 Nov; 111(43):12605-9. PubMed ID: 17918876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral heterogeneity in single light-harvesting chlorosomes from green sulfur photosynthetic bacterium chlorobium tepidum.
    Saga Y; Wazawa T; Mizoguchi T; Ishii Y; Yanagida T; Tamiaki H
    Photochem Photobiol; 2002 Apr; 75(4):433-6. PubMed ID: 12003135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of exogenous isoprenoid diphosphates on in vivo attachment to bacteriochlorophyllide c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum.
    Saga Y; Yamashita H
    J Biosci Bioeng; 2017 Oct; 124(4):408-413. PubMed ID: 28579086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.