These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1202910)

  • 1. Inner ear damage and hearing loss after exposure to tones of high intensity.
    Dolan TR; Ades HW; Bredberg G; Neff WD
    Acta Otolaryngol; 1975; 80(5-6):343-52. PubMed ID: 1202910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of thresholds and temporal integration in adult chickens after high-level 525-Hz pure-tone exposure.
    Saunders SS; Salvi RJ; Miller KM
    J Acoust Soc Am; 1995 Feb; 97(2):1150-64. PubMed ID: 7876437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Threshold shift and inner ear pathology in guinea pigs exposed to octave bands of noise at 63 Hz and 4 kHz].
    Wang L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Oct; 25(5):277-80, 318. PubMed ID: 2076336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hearing shift and inner ear pathology of guinea pigs exposed to octave bands of noise centered at 63 Hz and 4 kHz.
    Wang L; Jiang W; Qian J
    Chin Med J (Engl); 1994 Jul; 107(7):500-4. PubMed ID: 7956496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule.
    Smith ME; Schuck JB; Gilley RR; Rogers BD
    BMC Neurosci; 2011 Feb; 12():19. PubMed ID: 21324138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evoked otoacoustic emissions in noise-induced hearing loss].
    Bicciolo G; Ruscito P; Rizzo S; Frenguelli A
    Acta Otorhinolaryngol Ital; 1993; 13(6):505-15. PubMed ID: 8209689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorineural hearing loss after vibration: an animal model for evaluating prevention and treatment of inner ear hearing loss.
    Zou J; Bretlau P; Pyykkö I; Starck J; Toppila E
    Acta Otolaryngol; 2001 Jan; 121(2):143-8. PubMed ID: 11349766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B
    Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated TTS exposures in monkeys: alterations in hearing, cochlear structure, and single-unit thresholds.
    Lonsbury-Martin BL; Martin GK; Bohne BA
    J Acoust Soc Am; 1987 May; 81(5):1507-18. PubMed ID: 3584688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of noise exposure during solitary trumpet playing: immediate impact on distortion-product otoacoustic emissions and long-term implications for hearing.
    Poissant SF; Freyman RL; MacDonald AJ; Nunes HA
    Ear Hear; 2012; 33(4):543-53. PubMed ID: 22531575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss.
    Sly DJ; Campbell L; Uschakov A; Saief ST; Lam M; O'Leary SJ
    Otol Neurotol; 2016 Oct; 37(9):1223-30. PubMed ID: 27631825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation.
    Strömberg AK; Olofsson Å; Westin M; Duan M; Stenfelt S
    Hear Res; 2016 Oct; 340():43-49. PubMed ID: 26724755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat stress and protection from permanent acoustic injury in mice.
    Yoshida N; Kristiansen A; Liberman MC
    J Neurosci; 1999 Nov; 19(22):10116-24. PubMed ID: 10559419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ipsilateral and contralateral low-frequency narrow-band noise on temporary threshold shift in humans.
    Quaranta A; Scaringi A; Fernandez-Vega S; Quaranta N
    Acta Otolaryngol; 2003 Jan; 123(2):164-7. PubMed ID: 12701733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of high-intensity, low-frequency active sonar on rainbow trout.
    Popper AN; Halvorsen MB; Kane A; Miller DL; Smith ME; Song J; Stein P; Wysocki LE
    J Acoust Soc Am; 2007 Jul; 122(1):623-35. PubMed ID: 17614519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossed and uncrossed olivocochlear pathways exacerbate temporary shifts in hearing sensitivity after narrow band sound trauma in normal ears of animals with unilateral hearing impairment.
    Rajan R
    Audiol Neurootol; 2003; 8(5):250-62. PubMed ID: 12904680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear.
    Rajan R
    J Neurophysiol; 2001 Mar; 85(3):1257-69. PubMed ID: 11247994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.