BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12029353)

  • 1. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetatae appear at the base of the gymnosperms.
    Schmidt M; Schneider-Poetsch HA
    J Mol Evol; 2002 Jun; 54(6):715-24. PubMed ID: 12029353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny.
    Gugerli F; Sperisen C; Büchler U; Brunner I; Brodbeck S; Palmer JD; Qiu YL
    Mol Phylogenet Evol; 2001 Nov; 21(2):167-75. PubMed ID: 11697913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolution in the GAF domain of phytochromes in gymnosperms.
    Wang J; Yan B; Chen G; Su Y; Wang T
    Biochem Genet; 2010 Apr; 48(3-4):236-47. PubMed ID: 19967442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone.
    Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW
    Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae.
    Hajibabaei M; Xia J; Drouin G
    Mol Phylogenet Evol; 2006 Jul; 40(1):208-17. PubMed ID: 16621615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.
    Nardmann J; Reisewitz P; Werr W
    Mol Biol Evol; 2009 Aug; 26(8):1745-55. PubMed ID: 19387013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants.
    Wu CS; Wang YN; Liu SM; Chaw SM
    Mol Biol Evol; 2007 Jun; 24(6):1366-79. PubMed ID: 17383970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum.
    Kolukisaoglu HU; Marx S; Wiegmann C; Hanelt S; Schneider-Poetsch HA
    J Mol Evol; 1995 Sep; 41(3):329-37. PubMed ID: 7563118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of the AP2 subfamily.
    Shigyo M; Hasebe M; Ito M
    Gene; 2006 Feb; 366(2):256-65. PubMed ID: 16388920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants.
    Drouin G; Daoud H; Xia J
    Mol Phylogenet Evol; 2008 Dec; 49(3):827-31. PubMed ID: 18838124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of taxaceae and cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region.
    Cheng Y; Nicolson RG; Tripp K; Chaw SM
    Mol Phylogenet Evol; 2000 Mar; 14(3):353-65. PubMed ID: 10712841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences.
    Donoghue MJ; Mathews S
    Mol Phylogenet Evol; 1998 Jun; 9(3):489-500. PubMed ID: 9667997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography.
    Yang ZY; Ran JH; Wang XQ
    Mol Phylogenet Evol; 2012 Sep; 64(3):452-70. PubMed ID: 22609823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae.
    Hao da C; Huang BL; Chen SL; Mu J
    Biochem Genet; 2009 Jun; 47(5-6):351-69. PubMed ID: 19252978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.
    Chaw SM; Zharkikh A; Sung HM; Lau TC; Li WH
    Mol Biol Evol; 1997 Jan; 14(1):56-68. PubMed ID: 9000754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers.
    Bateman RM; Hilton J; Rudall PJ
    J Exp Bot; 2006; 57(13):3471-503. PubMed ID: 17056677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeny of seed plants based on evidence from eight genes.
    Soltis DE; Soltis PS; Zanis MJ
    Am J Bot; 2002 Oct; 89(10):1670-81. PubMed ID: 21665594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences.
    Stefanoviac S; Jager M; Deutsch J; Broutin J; Masselot M
    Am J Bot; 1998 May; 85(5):688. PubMed ID: 21684951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.