BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 12029376)

  • 1. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium.
    Sánchez JM; Li Y; Rubashkin A; Iserovich P; Wen Q; Ruberti JW; Smith RW; Rittenband D; Kuang K; Diecke FP; Fischbarg J
    J Membr Biol; 2002 May; 187(1):37-50. PubMed ID: 12029376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquaporins and fluid transport: an evolving relationship.
    Fischbarg J
    Cell Mol Biol (Noisy-le-grand); 2006 Oct; 52(7):28-33. PubMed ID: 17543218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of fluid transport across corneal endothelium and epithelia in general.
    Fischbarg J
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):30-40. PubMed ID: 14598383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.
    Fischbarg J
    Physiol Rev; 2010 Oct; 90(4):1271-90. PubMed ID: 20959616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force.
    Fischbarg J; Diecke FP; Iserovich P; Rubashkin A
    J Membr Biol; 2006 Mar; 210(2):117-30. PubMed ID: 16868674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice.
    Kuang K; Yiming M; Wen Q; Li Y; Ma L; Iserovich P; Verkman AS; Fischbarg J
    Exp Eye Res; 2004 Apr; 78(4):791-8. PubMed ID: 15037113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corneal endothelium transports fluid in the absence of net solute transport.
    Diecke FP; Ma L; Iserovich P; Fischbarg J
    Biochim Biophys Acta; 2007 Sep; 1768(9):2043-8. PubMed ID: 17597578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous fluid transport across isolated rabbit and bovine ciliary body preparations.
    Candia OA; To CH; Gerometta RM; Zamudio AC
    Invest Ophthalmol Vis Sci; 2005 Mar; 46(3):939-47. PubMed ID: 15728551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial Fluid Transport is Due to Electro-osmosis (80%), Plus Osmosis (20%).
    Fischbarg J; Hernandez JA; Rubashkin AA; Iserovich P; Cacace VI; Kusnier CF
    J Membr Biol; 2017 Jun; 250(3):327-333. PubMed ID: 28623474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.
    Sanchez JM; Cacace V; Kusnier CF; Nelson R; Rubashkin AA; Iserovich P; Fischbarg J
    J Membr Biol; 2016 Aug; 249(4):469-73. PubMed ID: 26989056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal endothelial structure and function under normal and toxic conditions.
    Green K
    Cell Biol Rev; 1991; 25(3):169-207. PubMed ID: 1764619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport functions of the gallbladder.
    Frizzell RA; Heintze K
    Int Rev Physiol; 1980; 21():221-47. PubMed ID: 6993395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions.
    Rubashkin A; Iserovich P; Hernández JA; Fischbarg J
    J Membr Biol; 2005 Dec; 208(3):251-63. PubMed ID: 16648941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model of electrolyte and fluid transport across corneal endothelium.
    Fischbarg J; Diecke FP
    J Membr Biol; 2005 Jan; 203(1):41-56. PubMed ID: 15834688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal endothelial structure and function under normal and toxic conditions.
    Green K
    Cell Biol Rev; 1991; 25(3):169-207, 231-3. PubMed ID: 1364327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells.
    Kuang K; Li Y; Yiming M; Sánchez JM; Iserovich P; Cragoe EJ; Diecke FP; Fischbarg J
    Exp Eye Res; 2004 Jul; 79(1):93-103. PubMed ID: 15183104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid transport across the isolated porcine ciliary epithelium.
    Candia OA; To CH; Law CS
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):321-7. PubMed ID: 17197549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the paracellular pathway in isotonic fluid movement across the renal tubule.
    Boulpaep EL; Sackin H
    Yale J Biol Med; 1977; 50(2):115-31. PubMed ID: 331692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of paracellular pathways in isotonic fluid transport.
    Schultz SG
    Yale J Biol Med; 1977; 50(2):99-113. PubMed ID: 331697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.