These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12029388)

  • 1. Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures.
    Stülke J
    Arch Microbiol; 2002 Jun; 177(6):433-40. PubMed ID: 12029388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples.
    Schilling O; Herzberg C; Hertrich T; Vörsmann H; Jessen D; Hübner S; Titgemeyer F; Stülke J
    Nucleic Acids Res; 2006; 34(21):6102-15. PubMed ID: 17074746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT.
    Langbein I; Bachem S; Stülke J
    J Mol Biol; 1999 Nov; 293(4):795-805. PubMed ID: 10543968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cold shock proteins on transcription and translation studied in cell-free model systems.
    Hofweber R; Horn G; Langmann T; Balbach J; Kremer W; Schmitz G; Kalbitzer HR
    FEBS J; 2005 Sep; 272(18):4691-702. PubMed ID: 16156790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem transcription and translation regulatory sensing of uncharged tryptophan tRNA.
    Chen G; Yanofsky C
    Science; 2003 Jul; 301(5630):211-3. PubMed ID: 12855807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity.
    Schilling O; Langbein I; Müller M; Schmalisch MH; Stülke J
    Nucleic Acids Res; 2004; 32(9):2853-64. PubMed ID: 15155854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of HutP-mediated transcription anti-termination.
    Kumar PK; Kumarevel T; Mizuno H
    Curr Opin Struct Biol; 2006 Feb; 16(1):18-26. PubMed ID: 16427271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda.
    Rees WA; Weitzel SE; Das A; von Hippel PH
    J Mol Biol; 1997 Nov; 273(4):797-813. PubMed ID: 9367773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader.
    Chai W; Stewart V
    J Mol Biol; 1999 Sep; 292(2):203-16. PubMed ID: 10493869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular biology. Turning gene regulation on its head.
    Losick R; Sonenshein AL
    Science; 2001 Sep; 293(5537):2018-9. PubMed ID: 11557871
    [No Abstract]   [Full Text] [Related]  

  • 12. Efficient transcriptional antitermination from the Escherichia coli cytoplasmic membrane.
    Görke B; Rak B
    J Mol Biol; 2001 Apr; 308(2):131-45. PubMed ID: 11327758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of induced fit in the interaction of Bacillus subtilis trp RNA-binding attenuator protein and its RNA antiterminator target oligomer.
    Flynn PF; Wendt A; Gollnick P
    Proteins; 2002 Dec; 49(4):432-8. PubMed ID: 12402353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales.
    Irnov I; Winkler WC
    Mol Microbiol; 2010 May; 76(3):559-75. PubMed ID: 20374491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA interactions in the regulation of transcription.
    von Hippel PH; Rees WA; Wilson KS
    Nucleic Acids Symp Ser; 1995; (33):1-4. PubMed ID: 8643338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene.
    Grundy FJ; Yousef MR; Henkin TM
    J Mol Biol; 2005 Feb; 346(1):73-81. PubMed ID: 15663928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis.
    Kumarevel T
    Biophys Chem; 2007 Jun; 128(1):1-12. PubMed ID: 17395359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA.
    Yousef MR; Grundy FJ; Henkin TM
    J Mol Biol; 2005 Jun; 349(2):273-87. PubMed ID: 15890195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins that interact with bacterial small RNA regulators.
    Pichon C; Felden B
    FEMS Microbiol Rev; 2007 Sep; 31(5):614-25. PubMed ID: 17655690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions.
    Henkin TM; Yanofsky C
    Bioessays; 2002 Aug; 24(8):700-7. PubMed ID: 12210530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.