These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 12029477)
1. Stress-induced protein CSP 310: a third uncoupling system in plants. Kolesnichenko AV; Pobezhimova TP; Grabelnych OI; Voinikov VK Planta; 2002 Jun; 215(2):279-86. PubMed ID: 12029477 [TBL] [Abstract][Full Text] [Related]
2. Influence of CSP 310 and CSP 310-like proteins from cereals on mitochondrial energetic activity and lipid peroxidation in vitro and in vivo. Kolesnichenko AV; Zykova VV; Grabelnych OI; Koroleva NA; Pobezhimova TP; Konstantinov YM; Voinikov VK BMC Plant Biol; 2001; 1():1. PubMed ID: 11667950 [TBL] [Abstract][Full Text] [Related]
3. Non-phosphorylating bypass of the plant mitochondrial respiratory chain by stress protein CSP 310. Kolesnichenko AV; Grabelnych OI; Pobezhimova TP; Voinikov VK Planta; 2005 Apr; 221(1):113-22. PubMed ID: 15668769 [TBL] [Abstract][Full Text] [Related]
4. An influence of antiserum against winter wheat stress uncoupling protein, CSP 310, on energetic activity of some plant species mitochondria. Kolesnichenko AV; Grabelnych OI; Sumina ON; Pobezhimova TP; Voinikov VK J Immunoassay Immunochem; 2001; 22(1):75-83. PubMed ID: 11486820 [TBL] [Abstract][Full Text] [Related]
5. Free fatty acids regulate the uncoupling protein and alternative oxidase activities in plant mitochondria. Sluse FE; Almeida AM; Jarmuszkiewicz W; Vercesi AE FEBS Lett; 1998 Aug; 433(3):237-40. PubMed ID: 9744802 [TBL] [Abstract][Full Text] [Related]
6. An influence of stress protein CSP 310 and antiserum against this protein on lipid peroxidation in cereal mitochondria. Kolesnichenko AV; Grabelnych OI; Tourchaninova VV; Zykova VV; Koroleva NA; Pobezhimova TP; Voinikov VK J Immunoassay Immunochem; 2001; 22(2):113-26. PubMed ID: 11486810 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. Borovskii GB; Stupnikova IV; Antipina AI; Vladimirova SV; Voinikov VK BMC Plant Biol; 2002 Jun; 2():5. PubMed ID: 12057012 [TBL] [Abstract][Full Text] [Related]
8. Linoleic acid-induced activity of plant uncoupling mitochondrial protein in purified tomato fruit mitochondria during resting, phosphorylating, and progressively uncoupled respiration. Jarmuszkiewicz W; Almeida AM; Sluse-Goffart CM; Sluse FE; Vercesi AE J Biol Chem; 1998 Dec; 273(52):34882-6. PubMed ID: 9857016 [TBL] [Abstract][Full Text] [Related]
9. Stress protein CSP 310 causes oxidation and phosphorylation uncoupling during low-temperature stress only in cereal but not in dycotyledon mitochondria. Grabelnych OI; Pobezhimova TP; Kolesnichenko AV; Voinikov VK J Immunoassay Immunochem; 2001; 22(3):275-87. PubMed ID: 11506277 [TBL] [Abstract][Full Text] [Related]
10. The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria. Casolo V; Braidot E; Chiandussi E; Macrì F; Vianello A FEBS Lett; 2000 May; 474(1):53-7. PubMed ID: 10828450 [TBL] [Abstract][Full Text] [Related]
11. Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. Kurimoto K; Millar AH; Lambers H; Day DA; Noguchi K Plant Cell Physiol; 2004 Aug; 45(8):1015-22. PubMed ID: 15356327 [TBL] [Abstract][Full Text] [Related]
13. Undecanesulfonate does not allosterically activate H+ uniport mediated by uncoupling protein-1 in brown adipose tissue mitochondria. Jezek P; Spacek T; Garlid K; Jabůrek M Int J Biochem Cell Biol; 2006; 38(11):1965-74. PubMed ID: 16807058 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Grabelnych OI; Borovik OA; Tauson EL; Pobezhimova TP; Katyshev AI; Pavlovskaya NS; Koroleva NA; Lyubushkina IV; Bashmakov VY; Popov VN; Borovskii GB; Voinikov VK Biochemistry (Mosc); 2014 Jun; 79(6):506-19. PubMed ID: 25100008 [TBL] [Abstract][Full Text] [Related]
15. Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. Borecký J; Vercesi AE Biosci Rep; 2005; 25(3-4):271-86. PubMed ID: 16283557 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of proteins immunochemically related to dehydrins in mitochondria of plants exposed to low temperature. Borovskii GB; Stupnikova IV; Antipina AI; Voinikov VK Dokl Biochem; 2000; 371(1-6):46-9. PubMed ID: 10853448 [No Abstract] [Full Text] [Related]
17. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Dlasková A; Spacek T; Skobisová E; Santorová J; Jezek P Biochim Biophys Acta; 2006; 1757(5-6):467-73. PubMed ID: 16781660 [TBL] [Abstract][Full Text] [Related]
19. The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter. González-Barroso MM; Fleury C; Bouillaud F; Nicholls DG; Rial E J Biol Chem; 1998 Jun; 273(25):15528-32. PubMed ID: 9624141 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of plant-uncoupling mitochondrial protein (PUMP) in diverse organs and tissues of several plants. Jezek P; Zácková M; Kosarová J; Rodrigues ET; Madeira VM; Vicente JA J Bioenerg Biomembr; 2000 Dec; 32(6):549-61. PubMed ID: 15254369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]