These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 12029829)
21. Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Dihazi GH; Sinz A Rapid Commun Mass Spectrom; 2003; 17(17):2005-14. PubMed ID: 12913864 [TBL] [Abstract][Full Text] [Related]
22. Effects of disulfide bonds on compactness of protein molecules revealed by volume, compressibility, and expansibility changes during reduction. Gekko K; Kimoto A; Kamiyama T Biochemistry; 2003 Nov; 42(46):13746-53. PubMed ID: 14622021 [TBL] [Abstract][Full Text] [Related]
23. Online microwave D-cleavage LC-ESI-MS/MS of intact proteins: site-specific cleavages at aspartic acid residues and disulfide bonds. Hauser NJ; Basile F J Proteome Res; 2008 Mar; 7(3):1012-26. PubMed ID: 18198820 [TBL] [Abstract][Full Text] [Related]
24. Increase of ovalbumin glycation by the maillard reaction after disruption of the disulfide bridge evaluated by liquid chromatography and high resolution mass spectrometry. Huang X; Tu Z; Wang H; Zhang Q; Shi Y; Xiao H J Agric Food Chem; 2013 Mar; 61(9):2253-62. PubMed ID: 23394680 [TBL] [Abstract][Full Text] [Related]
25. In-solution digestion of proteins for mass spectrometry. Medzihradszky KF Methods Enzymol; 2005; 405():50-65. PubMed ID: 16413310 [TBL] [Abstract][Full Text] [Related]
26. Ultra fast trypsin digestion of proteins by high intensity focused ultrasound. López-Ferrer D; Capelo JL; Vázquez J J Proteome Res; 2005; 4(5):1569-74. PubMed ID: 16212408 [TBL] [Abstract][Full Text] [Related]
27. Determination of in vivo disulfide-bonded proteins in Arabidopsis. Alvarez S; Wilson GH; Chen S J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jan; 877(1-2):101-4. PubMed ID: 19058769 [TBL] [Abstract][Full Text] [Related]
28. Protein identification by peptide mass fingerprinting and peptide sequence tagging with alternating scans of nano-liquid chromatography/infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Kosaka T; Yoneyama-Takazawa T; Kubota K; Matsuoka T; Sato I; Sasaki T; Tanaka Y J Mass Spectrom; 2003 Dec; 38(12):1281-7. PubMed ID: 14696210 [TBL] [Abstract][Full Text] [Related]
29. Insoluble eggshell matrix proteins--their peptide mapping and partial characterization by capillary electrophoresis and high-performance liquid chromatography. Miksík I; Charvátová J; Eckhardt A; Deyl Z Electrophoresis; 2003 Mar; 24(5):843-52. PubMed ID: 12627446 [TBL] [Abstract][Full Text] [Related]
30. Characterization of protein impurities and site-specific modifications using peptide mapping with liquid chromatography and data independent acquisition mass spectrometry. Xie H; Gilar M; Gebler JC Anal Chem; 2009 Jul; 81(14):5699-708. PubMed ID: 19518054 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of enzymatic digestion and liquid chromatography-mass spectrometry peptide mapping of the integral membrane protein bacteriorhodopsin. Hixson KK; Rodriguez N; Camp DG; Strittmatter EF; Lipton MS; Smith RD Electrophoresis; 2002 Sep; 23(18):3224-32. PubMed ID: 12298094 [TBL] [Abstract][Full Text] [Related]
32. Complementary mass spectrometric techniques to achieve complete sequence coverage of recombinant human tropoelastin. Getie M; Schmelzer CE; Weiss AS; Neubert RH Rapid Commun Mass Spectrom; 2005; 19(20):2989-93. PubMed ID: 16178053 [No Abstract] [Full Text] [Related]
33. Characterization of protein primary structure. Speicher DW Dev Biol Stand; 1998; 96():27-8. PubMed ID: 9890512 [No Abstract] [Full Text] [Related]
34. Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography. Havugimana PC; Wong P; Emili A J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Feb; 847(1):54-61. PubMed ID: 17140863 [TBL] [Abstract][Full Text] [Related]
35. The cyclotide fingerprint in oldenlandia affinis: elucidation of chemically modified, linear and novel macrocyclic peptides. Plan MR; Göransson U; Clark RJ; Daly NL; Colgrave ML; Craik DJ Chembiochem; 2007 Jun; 8(9):1001-11. PubMed ID: 17534989 [TBL] [Abstract][Full Text] [Related]
36. A comparison of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques for 2-D peptide mapping of membrane proteins. Scheurer SB; Roesli C; Neri D; Elia G Proteomics; 2005 Aug; 5(12):3035-9. PubMed ID: 16003826 [TBL] [Abstract][Full Text] [Related]
37. Selective detection of thiosulfate-containing peptides using tandem mass spectrometry. Raftery MJ Rapid Commun Mass Spectrom; 2005; 19(5):674-82. PubMed ID: 15700231 [TBL] [Abstract][Full Text] [Related]
38. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex. Kalkhof S; Ihling C; Mechtler K; Sinz A Anal Chem; 2005 Jan; 77(2):495-503. PubMed ID: 15649045 [TBL] [Abstract][Full Text] [Related]
39. Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery. Chen G; Pramanik BN; Liu YH; Mirza UA J Mass Spectrom; 2007 Mar; 42(3):279-87. PubMed ID: 17295416 [TBL] [Abstract][Full Text] [Related]
40. [Peptide mapping analysis of recombinant human interleukin-11 with HPLC-ESI-Q-TOF/MS spectrometry]. Yang Y; Rao CM; Wang W; Han CM; Wang JZ Yao Xue Xue Bao; 2006 Aug; 41(8):756-60. PubMed ID: 17039783 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]