These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 12030034)
1. [Multiplicity and regulatory mechanism of carboxylesterase isozymes which catalyzes the hydrolysis of long-chain fatty acid esters]. Hosokawa M Seikagaku; 2002 Apr; 74(4):311-6. PubMed ID: 12030034 [No Abstract] [Full Text] [Related]
2. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae. Ploier B; Korber M; Schmidt C; Koch B; Leitner E; Daum G Biochim Biophys Acta; 2015 Jul; 1851(7):977-86. PubMed ID: 25720564 [TBL] [Abstract][Full Text] [Related]
3. cDNA cloning, characterization and stable expression of novel human brain carboxylesterase. Mori M; Hosokawa M; Ogasawara Y; Tsukada E; Chiba K FEBS Lett; 1999 Sep; 458(1):17-22. PubMed ID: 10518925 [TBL] [Abstract][Full Text] [Related]
4. Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Mentlein R; Heymann E Biochem Pharmacol; 1984 Apr; 33(8):1243-8. PubMed ID: 6712734 [TBL] [Abstract][Full Text] [Related]
5. [Progress in the structure and function of human carboxylesterase 1]. Tong J; Yi Y; Cao P; Liu C; Wang L; Lü Y Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1414-22. PubMed ID: 23593865 [TBL] [Abstract][Full Text] [Related]
6. Stereoselective characteristics and mechanisms of epidermal carboxylesterase metabolism observed in HaCaT keratinocytes. Zhu QG; Hu JH; Liu JY; Lu SW; Liu YX; Wang J Biol Pharm Bull; 2007 Mar; 30(3):532-6. PubMed ID: 17329851 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of a carboxylesterase from Pseudomonas sp. KWI-56. Sugihara A; Shimada Y; Nagao T; Iizumi T; Nakamura K; Fukase T; Tominaga Y Biosci Biotechnol Biochem; 1994 Apr; 58(4):752-5. PubMed ID: 7764864 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Sanghani SP; Quinney SK; Fredenburg TB; Davis WI; Murry DJ; Bosron WF Drug Metab Dispos; 2004 May; 32(5):505-11. PubMed ID: 15100172 [TBL] [Abstract][Full Text] [Related]
9. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Imai T; Taketani M; Shii M; Hosokawa M; Chiba K Drug Metab Dispos; 2006 Oct; 34(10):1734-41. PubMed ID: 16837570 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of a new class of camptothecin derivatives, the long-chain fatty acid esters of 10-hydroxycamptothecin, as a potent prodrug candidate, and their in vitro metabolic conversion by carboxylesterases. Takayama H; Watanabe A; Hosokawa M; Chiba K; Satoh T; Aimi N Bioorg Med Chem Lett; 1998 Mar; 8(5):415-8. PubMed ID: 9871589 [TBL] [Abstract][Full Text] [Related]
11. [Features of inhibition of butyrylcholinesterase and carboxylesterase hydrolysis of fluoroanhydride esters by beta,beta-diphenylethylphosphonic acid]. Brestkin AP; Nikol'skaia EB; Kuznetsova LP; Efimtseva EA; Fridland SV Dokl Akad Nauk; 1994 Dec; 339(6):816-8. PubMed ID: 7888994 [No Abstract] [Full Text] [Related]
12. Purification and characterization of human heart fatty acid ethyl ester synthase/carboxylesterase. Bora PS; Guruge BL; Miller DD; Chaitman BR; Ruyle MS J Mol Cell Cardiol; 1997 Jan; 29(1):425. PubMed ID: 9040056 [No Abstract] [Full Text] [Related]
13. Enzymic hydrolysis of nicotinate esters: comparison between plasma and liver catalysis. Durrer A; Wernly-Chung GN; Boss G; Testa B Xenobiotica; 1992 Mar; 22(3):273-82. PubMed ID: 1496819 [TBL] [Abstract][Full Text] [Related]
14. Discovery and Design of Family VIII Carboxylesterases as Highly Efficient Acyltransferases. Müller H; Godehard SP; Palm GJ; Berndt L; Badenhorst CPS; Becker AK; Lammers M; Bornscheuer UT Angew Chem Int Ed Engl; 2021 Jan; 60(4):2013-2017. PubMed ID: 33140887 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships in the hydrolysis of acrylate and methacrylate esters by carboxylesterase in vitro. McCarthy TJ; Witz G Toxicology; 1997 Jan; 116(1-3):153-8. PubMed ID: 9020516 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of dibasic esters by rat nasal mucosal carboxylesterase. Bogdanffy MS; Kee CR; Hinchman CA; Trela BA Drug Metab Dispos; 1991; 19(1):124-9. PubMed ID: 1673384 [TBL] [Abstract][Full Text] [Related]
17. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Merali Z; Ross S; Paré G Drug Metabol Drug Interact; 2014; 29(3):143-51. PubMed ID: 24988246 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the chiral recognition ability of human carboxylesterase 1 using indomethacin esters. Takahashi M; Takani D; Haba M; Hosokawa M Chirality; 2020 Jan; 32(1):73-80. PubMed ID: 31693270 [TBL] [Abstract][Full Text] [Related]
19. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Köffel R; Tiwari R; Falquet L; Schneiter R Mol Cell Biol; 2005 Mar; 25(5):1655-68. PubMed ID: 15713625 [TBL] [Abstract][Full Text] [Related]
20. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing. Kadisch M; Schmid A; Bühler B J Ind Microbiol Biotechnol; 2017 Mar; 44(3):339-351. PubMed ID: 28012009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]