BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 1203083)

  • 1. Studies on hydrolysis and synthesis of fats in staphylococcus aureus and candida lipolytica.
    Alonzo V; Scheffers WA
    Boll Ist Sieroter Milan; 1975 Jun; 54(2):90-7. PubMed ID: 1203083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of primary and secondary esters of glycerol by pancreatic juice.
    Mattson FH; Volpenhein RA
    J Lipid Res; 1968 Jan; 9(1):79-84. PubMed ID: 4295350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3.
    Chang IA; Kim IH; Kang SC; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):301-6. PubMed ID: 17082930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of inoculation strategy on the progress of Candida rugosa cultivation.
    Takaç S; Erdem B; Unlü AE
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(3):130-7. PubMed ID: 19412822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on a novel carbon source and cosolvent for lipase production by Candida rugosa.
    Wei D; Zhang LY; Song Q
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):133-6. PubMed ID: 15069604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interesterification and synthesis by Candida cylindracea lipase in microemulsions.
    Bello M; Thomas D; Legoy MD
    Biochem Biophys Res Commun; 1987 Jul; 146(1):361-7. PubMed ID: 3606623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of rac-glycerol i-oleate and its utilization for glycerolipid synthesis by strain L fibroblasts.
    Lynch RD; Geyer RP
    Biochim Biophys Acta; 1972 Apr; 260(4):547-57. PubMed ID: 4337560
    [No Abstract]   [Full Text] [Related]  

  • 8. Immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate: solvent effect.
    Lu J; Nie K; Wang F; Tan T
    Bioresour Technol; 2008 Sep; 99(14):6070-4. PubMed ID: 18255281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions.
    Trubiano G; Borio D; Ferreira ML
    Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential hydrolysis of three acyl ester bonds in triolein molecule by human gastric juice lipase.
    Szafran Z; Kubala T; Szafran H; Popiela T
    Enzyme; 1983; 30(2):115-21. PubMed ID: 6617624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HYDROLYSIS AND SYNTHESIS OF GLYCERIDE ESTER BONDS CATALYZED BY PANCREATIC LIPASE.
    BORGSTROEM B
    Biochim Biophys Acta; 1964 Apr; 84():228-30. PubMed ID: 14181310
    [No Abstract]   [Full Text] [Related]  

  • 14. [Various lipases for producing products enriched with polyenic acids in fish fat hydrolysis].
    Khasanov KhT; Iakubov IT; Epshteĭn LM; Akulin VN; Latyshev NA; Davranov K; Sas'ianov SP; Rakhimov MM
    Prikl Biokhim Mikrobiol; 1991; 27(4):554-7. PubMed ID: 1745648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational strategy for the production of new crude lipases from Candida rugosa.
    de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV
    Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel, two consecutive enzyme synthesis of feruloylated monoacyl- and diacyl-glycerols in a solvent-free system.
    Sun S; Shan L; Liu Y; Jin Q; Wang X; Wang Z
    Biotechnol Lett; 2007 Dec; 29(12):1947-50. PubMed ID: 17657410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscope studies on the interactions of Candida rugosa lipase and supported lipidic bilayers.
    Prim N; Iversen L; Diaz P; Bjørnholm T
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):138-42. PubMed ID: 16829060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyl group exchange in the intestinal lumen during fat digestion.
    Reiser R; Fu HC
    Biochim Biophys Acta; 1966 Jun; 116(3):563-9. PubMed ID: 5963018
    [No Abstract]   [Full Text] [Related]  

  • 19. Lipid synthesis by the monoglyceride and alpha-glycerophosphate pathways in sheep intestine.
    Cunningham HM; Leat WM
    Can J Biochem; 1969 Nov; 47(11):1013-20. PubMed ID: 5367445
    [No Abstract]   [Full Text] [Related]  

  • 20. Stereoselectivity of lipases in supercritical carbon dioxide. I. Dependence of the regio- and enantioselectivity of porcine pancreas lipase on the water content during the hydrolysis of triolein and its partial glycerides.
    Glowacz G; Bariszlovich M; Linke M; Richter P; Fuchs C; Mörsel JT
    Chem Phys Lipids; 1996 Mar; 79(2):101-6. PubMed ID: 8640898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.