These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 12030986)
1. Genetic relatedness and female spatial organization in a solitary carnivore, the raccoon, Procyon lotor. Ratnayeke S; Tuskan GA; Pelton MR Mol Ecol; 2002 Jun; 11(6):1115-24. PubMed ID: 12030986 [TBL] [Abstract][Full Text] [Related]
2. Home range, body condition, and survival of rehabilitated raccoons (Procyon lotor) during their first winter. McWilliams M; Wilson JA J Appl Anim Welf Sci; 2015; 18(2):133-52. PubMed ID: 25257398 [TBL] [Abstract][Full Text] [Related]
3. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Kyle CJ; Rico Y; Castillo S; Srithayakumar V; Cullingham CI; White BN; Pond BA Mol Ecol; 2014 May; 23(9):2287-98. PubMed ID: 24655158 [TBL] [Abstract][Full Text] [Related]
4. Landscape genetics of raccoons (Procyon lotor) associated with ridges and valleys of Pennsylvania: implications for oral rabies vaccination programs. Root JJ; Puskas RB; Fischer JW; Swope CB; Neubaum MA; Reeder SA; Piaggio AJ Vector Borne Zoonotic Dis; 2009 Dec; 9(6):583-8. PubMed ID: 19125658 [TBL] [Abstract][Full Text] [Related]
5. Dispersal, philopatry, and genetic relatedness in a social carnivore: comparing males and females. Gompper ME; Gittleman JL; Wayne RK Mol Ecol; 1998 Feb; 7(2):157-63. PubMed ID: 9532759 [TBL] [Abstract][Full Text] [Related]
7. Resource distribution, female home range dispersion and male spatial interactions: group structure in a solitary carnivore. Gehrt SD; Fritzell EK Anim Behav; 1998 May; 55(5):1211-27. PubMed ID: 9632506 [TBL] [Abstract][Full Text] [Related]
8. Prerequisites for oral immunization of free-ranging raccoons (Procyon lotor) with a recombinant rabies virus vaccine: study site ecology and bait system development. Hable CP; Hamir AN; Snyder DE; Joyner R; French J; Nettles V; Hanlon C; Rupprecht CE J Wildl Dis; 1992 Jan; 28(1):64-79. PubMed ID: 1548804 [TBL] [Abstract][Full Text] [Related]
9. First detection of Trichinella pseudospiralis infection in raccoon (Procyon lotor) in Central Europe. Cybulska A; Skopek R; Kornacka A; Popiołek M; Piróg A; Laskowski Z; Moskwa B Vet Parasitol; 2018 Apr; 254():114-119. PubMed ID: 29656995 [TBL] [Abstract][Full Text] [Related]
10. Reproductive characteristics of the feral raccoon (Procyon lotor) in Hokkaido, Japan. Asano M; Matoba Y; Ikeda T; Suzuki M; Asakawa M; Ohtaishi N J Vet Med Sci; 2003 Mar; 65(3):369-73. PubMed ID: 12679568 [TBL] [Abstract][Full Text] [Related]
11. Population genetic structure of raccoons as a consequence of multiple introductions and range expansion in the Boso Peninsula, Japan. Hirose M; Yoshida K; Inoue E; Hasegawa M Sci Rep; 2021 Sep; 11(1):19294. PubMed ID: 34588496 [TBL] [Abstract][Full Text] [Related]
12. Combining direct and indirect genetic methods to estimate dispersal for informing wildlife disease management decisions. Cullingham CI; Pond BA; Kyle CJ; Rees EE; Rosatte RC; White BN Mol Ecol; 2008 Nov; 17(22):4874-86. PubMed ID: 19140978 [TBL] [Abstract][Full Text] [Related]
13. Assessing a landscape barrier using genetic simulation modelling: implications for raccoon rabies management. Rees EE; Pond BA; Cullingham CI; Tinline R; Ball D; Kyle CJ; White BN Prev Vet Med; 2008 Aug; 86(1-2):107-23. PubMed ID: 18440659 [TBL] [Abstract][Full Text] [Related]
14. Cryptosporidium spp. and Enterocytozoon bieneusi in introduced raccoons (Procyon lotor)-first evidence from Poland and Germany. Leśniańska K; Perec-Matysiak A; Hildebrand J; Buńkowska-Gawlik K; Piróg A; Popiołek M Parasitol Res; 2016 Dec; 115(12):4535-4541. PubMed ID: 27630099 [TBL] [Abstract][Full Text] [Related]
15. Spatial and temporal factors affecting parasite genotypes encountered by hosts: empirical data from American dog ticks (Dermacentor variabilis) parasitising raccoons (Procyon lotor). Dharmarajan G; Beasley JC; Rhodes OE Int J Parasitol; 2010 Jun; 40(7):787-95. PubMed ID: 20060394 [TBL] [Abstract][Full Text] [Related]
16. Can MHC-assortative partner choice promote offspring diversity? A new combination of MHC-dependent behaviours among sexes in a highly successful invasive mammal. Santos PSC; Michler FU; Sommer S Mol Ecol; 2017 Apr; 26(8):2392-2404. PubMed ID: 28141891 [TBL] [Abstract][Full Text] [Related]
17. Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast Queensland. Hazlitt SL; Eldridge MD; Goldizen AW Mol Ecol; 2004 Dec; 13(12):3621-32. PubMed ID: 15548278 [TBL] [Abstract][Full Text] [Related]
18. Reproductive characteristics of feral raccoons (Procyon lotor) captured by the pest control in Kamakura, Japan. KATO T; ICHIDA Y; TEI K; ASANO M; HAYAMA S J Vet Med Sci; 2009 Nov; 71(11):1473-8. PubMed ID: 19959898 [TBL] [Abstract][Full Text] [Related]
19. Similar yet different: co-analysis of the genetic diversity and structure of an invasive nematode parasite and its invasive mammalian host. Osten-Sacken N; Heddergott M; Schleimer A; Anheyer-Behmenburg HE; Runge M; Horsburgh GJ; Camp L; Nadler SA; Frantz AC Int J Parasitol; 2018 Mar; 48(3-4):233-243. PubMed ID: 29102623 [TBL] [Abstract][Full Text] [Related]
20. Does kinship affect spatial organization in a small and isolated population of a solitary felid: The Eurasian lynx? Schmidt K; Davoli F; Kowalczyk R; Randi E Integr Zool; 2016 Sep; 11(5):334-49. PubMed ID: 26749400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]