These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12031445)

  • 1. Cyanogenesis in glucosinolate-producing plants: Carica papaya and Carica quercifolia.
    Olafsdottir ES; Bolt Jørgensen L; Jaroszewski JW
    Phytochemistry; 2002 Jun; 60(3):269-73. PubMed ID: 12031445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya.
    Seigler DS; Pauli GF; Nahrstedt A; Leen R
    Phytochemistry; 2002 Aug; 60(8):873-82. PubMed ID: 12150815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates.
    Bak S; Nielsen HL; Halkier BA
    Plant Mol Biol; 1998 Nov; 38(5):725-34. PubMed ID: 9862490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and metabolic engineering of glucosinolates.
    Mikkelsen MD; Petersen BL; Olsen CE; Halkier BA
    Amino Acids; 2002; 22(3):279-95. PubMed ID: 12083070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanohydrin glycosides of Passiflora: distribution pattern, a saturated cyclopentane derivative from P. guatemalensis, and formation of pseudocyanogenic alpha-hydroxyamides as isolation artefacts.
    Jaroszewski JW; Olafsdottir ES; Wellendorph P; Christensen J; Franzyk H; Somanadhan B; Budnik BA; Jørgensen LB; Clausen V
    Phytochemistry; 2002 Mar; 59(5):501-11. PubMed ID: 11853745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of cyanogenic glycosides: A review.
    Cressey P; Reeve J
    Food Chem Toxicol; 2019 Mar; 125():225-232. PubMed ID: 30615957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of cyanogenic glycosides.
    Conn EE
    Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367
    [No Abstract]   [Full Text] [Related]  

  • 8. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.
    Tapper BA; Butler GW
    Biochem J; 1971 Oct; 124(5):935-41. PubMed ID: 5131015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro.
    Majak W; McDiarmid RE; Hall JW; Cheng KJ
    J Anim Sci; 1990 Jun; 68(6):1648-55. PubMed ID: 2166729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms.
    Lei V; Amoa-Awua WK; Brimer L
    Int J Food Microbiol; 1999 Dec; 53(2-3):169-84. PubMed ID: 10634708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic analysis of unripe papaya (Carica papaya L.) to promote its utilization as a functional food.
    Hiraga Y; Ara T; Sato N; Akimoto N; Sugiyama K; Suzuki H; Kera K
    Biosci Biotechnol Biochem; 2021 Apr; 85(5):1194-1204. PubMed ID: 33704369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency of cyanogenesis in tropical rainforests of far north Queensland, Australia.
    Miller RE; Jensen R; Woodrow IE
    Ann Bot; 2006 Jun; 97(6):1017-44. PubMed ID: 16520340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and sub-chronic toxicity studies of three plants used in Cameroonian ethnoveterinary medicine: Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) leaves, Carica papaya L. (Caricaceae) seeds or leaves, and Mimosa pudica L. (Fabaceae) leaves in Kabir chicks.
    Nghonjuyi NW; Tiambo CK; Taïwe GS; Toukala JP; Lisita F; Juliano RS; Kimbi HK
    J Ethnopharmacol; 2016 Feb; 178():40-9. PubMed ID: 26657577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the mucilage extracted from jaracatiá (Carica quercifolia (A. St. Hil.) Hieron).
    Faccio C; Machado RA; de Souza LM; Zoldan SR; Quadri MG
    Carbohydr Polym; 2015 Oct; 131():370-6. PubMed ID: 26256196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in Alliaria petiolata.
    Frisch T; Møller BL
    FEBS J; 2012 May; 279(9):1545-62. PubMed ID: 22212644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases.
    Gleadow RM; Vecchies AC; Woodrow IE
    Phytochemistry; 2003 Jul; 63(6):699-704. PubMed ID: 12842143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of nitrilases in glucosinolate-containing plants.
    Janowitz T; Trompetter I; Piotrowski M
    Phytochemistry; 2009; 70(15-16):1680-6. PubMed ID: 19698961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation.
    Agerbirk N; Olsen CE; Poulsen E; Jacobsen N; Hansen PR
    Insect Biochem Mol Biol; 2010 Feb; 40(2):126-37. PubMed ID: 20079434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant analysis by butterflies: occurrence of cyclopentenylglycines in Passifloraceae, Flacourtiaceae, and Turneraceae and discovery of the novel nonproteinogenic amino acid 2-(3'-cyclopentenyl)glycine in Rinorea.
    Clausen V; Frydenvang K; Koopmann R; Jørgensen LB; Abbiw DK; Ekpe P; Jaroszewski JW
    J Nat Prod; 2002 Apr; 65(4):542-7. PubMed ID: 11975497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of quality standard and phytochemical analysis of Carica papaya Linn leaves.
    Hussain SZ; Razvi N; Ali SI; Hasan SMF
    Pak J Pharm Sci; 2018 Sep; 31(5(Supplementary)):2169-2177. PubMed ID: 30393229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.