These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 12032079)

  • 1. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion.
    Ribbeck K; Görlich D
    EMBO J; 2002 Jun; 21(11):2664-71. PubMed ID: 12032079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of the passive permeability barrier of nuclear pore complexes.
    Mohr D; Frey S; Fischer T; Güttler T; Görlich D
    EMBO J; 2009 Sep; 28(17):2541-53. PubMed ID: 19680228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity.
    Schmidt HB; Görlich D
    Elife; 2015 Jan; 4():. PubMed ID: 25562883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties.
    Frey S; Richter RP; Görlich D
    Science; 2006 Nov; 314(5800):815-7. PubMed ID: 17082456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency, selectivity, and robustness of nucleocytoplasmic transport.
    Zilman A; Di Talia S; Chait BT; Rout MP; Magnasco MO
    PLoS Comput Biol; 2007 Jul; 3(7):e125. PubMed ID: 17630825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes.
    Labokha AA; Gradmann S; Frey S; Hülsmann BB; Urlaub H; Baldus M; Görlich D
    EMBO J; 2013 Jan; 32(2):204-18. PubMed ID: 23202855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier.
    Naim B; Zbaida D; Dagan S; Kapon R; Reich Z
    EMBO J; 2009 Sep; 28(18):2697-705. PubMed ID: 19680225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical basis of selective gating by the nuclear pore complex.
    Lim RY; Fahrenkrog B; Köser J; Schwarz-Herion K; Deng J; Aebi U
    Science; 2007 Oct; 318(5850):640-3. PubMed ID: 17916694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality.
    Peters R
    Traffic; 2005 May; 6(5):421-7. PubMed ID: 15813752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains.
    Fiserova J; Spink M; Richards SA; Saunter C; Goldberg MW
    J Cell Sci; 2014 Jan; 127(Pt 1):124-36. PubMed ID: 24144701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal nuclear pore complexes define FG repeat domains essential for transport.
    Strawn LA; Shen T; Shulga N; Goldfarb DS; Wente SR
    Nat Cell Biol; 2004 Mar; 6(3):197-206. PubMed ID: 15039779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes.
    Frey S; Görlich D
    Cell; 2007 Aug; 130(3):512-23. PubMed ID: 17693259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo.
    Zeitler B; Weis K
    J Cell Biol; 2004 Nov; 167(4):583-90. PubMed ID: 15557115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics.
    Wagner RS; Kapinos LE; Marshall NJ; Stewart M; Lim RYH
    Biophys J; 2015 Feb; 108(4):918-927. PubMed ID: 25692596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex.
    Patel SS; Belmont BJ; Sante JM; Rexach MF
    Cell; 2007 Apr; 129(1):83-96. PubMed ID: 17418788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Karyopherin-independent spontaneous transport of amphiphilic proteins through the nuclear pore.
    Kumeta M; Yamaguchi H; Yoshimura SH; Takeyasu K
    J Cell Sci; 2012 Nov; 125(Pt 21):4979-84. PubMed ID: 22946045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of translocation through nuclear pore complexes.
    Ribbeck K; Görlich D
    EMBO J; 2001 Mar; 20(6):1320-30. PubMed ID: 11250898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Properties Determining Passage Rates of Proteins through Nuclear Pores.
    Frey S; Rees R; Schünemann J; Ng SC; Fünfgeld K; Huyton T; Görlich D
    Cell; 2018 Jun; 174(1):202-217.e9. PubMed ID: 29958108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex.
    Moussavi-Baygi R; Jamali Y; Karimi R; Mofrad MR
    PLoS Comput Biol; 2011 Jun; 7(6):e1002049. PubMed ID: 21673865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recapitulation of selective nuclear import and export with a perfectly repeated 12mer GLFG peptide.
    Ng SC; Güttler T; Görlich D
    Nat Commun; 2021 Jun; 12(1):4047. PubMed ID: 34193851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.