These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12032480)

  • 1. Molecular and cellular mechanisms of myocardial remodeling.
    Maytin M; Colucci WS
    J Nucl Cardiol; 2002; 9(3):319-27. PubMed ID: 12032480
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular and cellular mechanisms of myocardial failure.
    Colucci WS
    Am J Cardiol; 1997 Dec; 80(11A):15L-25L. PubMed ID: 9412539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human endothelial nitric oxide synthase gene delivery protects against cardiac remodeling and reduces oxidative stress after myocardial infarction.
    Smith RS; Agata J; Xia CF; Chao L; Chao J
    Life Sci; 2005 Apr; 76(21):2457-71. PubMed ID: 15763077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy.
    Manabe I; Shindo T; Nagai R
    Circ Res; 2002 Dec; 91(12):1103-13. PubMed ID: 12480810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular matrix and left ventricular mechanics in overload hypertrophy.
    de Simone G; de Divitiis O
    Adv Clin Path; 2002 Jan; 6(1):3-10. PubMed ID: 17582942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and molecular effects.
    Ambardekar AV; Buttrick PM
    Circ Heart Fail; 2011 Mar; 4(2):224-33. PubMed ID: 21406678
    [No Abstract]   [Full Text] [Related]  

  • 7. Deletion of Microfibrillar-Associated Protein 4 Attenuates Left Ventricular Remodeling and Dysfunction in Heart Failure.
    Wang HB; Yang J; Shuai W; Yang J; Liu LB; Xu M; Tang QZ
    J Am Heart Assoc; 2020 Sep; 9(17):e015307. PubMed ID: 32856514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventricular remodeling without cellular contractile dysfunction.
    Anand IS
    J Card Fail; 2002 Dec; 8(6 Suppl):S401-8. PubMed ID: 12555152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition.
    Fraccarollo D; Galuppo P; Motschenbacher S; Ruetten H; Schäfer A; Bauersachs J
    Basic Res Cardiol; 2014 Jul; 109(4):421. PubMed ID: 24907870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide protects against pathological ventricular remodeling: reconsideration of the role of NO in the failing heart.
    Prabhu SD
    Circ Res; 2004 May; 94(9):1155-7. PubMed ID: 15142968
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis.
    Wollert KC; Drexler H
    Heart Fail Rev; 2002 Oct; 7(4):317-25. PubMed ID: 12379817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of vasopeptidase inhibitor omapatrilat and angiotensin receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines, and ventricular remodeling during healing after reperfused myocardial infarction.
    Palaniyappan A; Uwiera RR; Idikio H; Jugdutt BI
    Mol Cell Biochem; 2009 Jan; 321(1-2):9-22. PubMed ID: 18777087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular matrix remodeling during the progression of volume overload-induced heart failure.
    Hutchinson KR; Stewart JA; Lucchesi PA
    J Mol Cell Cardiol; 2010 Mar; 48(3):564-9. PubMed ID: 19524591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in matrix remodeling in diabetes and heart failure.
    Tyagi SC; Hayden MR
    Heart Fail Rev; 2003 Jan; 8(1):23-8. PubMed ID: 12652156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress.
    Kandalam V; Basu R; Moore L; Fan D; Wang X; Jaworski DM; Oudit GY; Kassiri Z
    Circulation; 2011 Nov; 124(19):2094-105. PubMed ID: 21986284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac remodeling induced by smoking: concepts, relevance, and potential mechanisms.
    Minicucci MF; Azevedo PS; Polegato BF; Paiva SA; Zornoff LA
    Inflamm Allergy Drug Targets; 2012 Dec; 11(6):442-7. PubMed ID: 22680625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling.
    Ushakov A; Ivanchenko V; Gagarina A
    Curr Cardiol Rev; 2020; 16(1):11-24. PubMed ID: 31072294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microRNA in ventricular remodeling: the miR-30 family.
    Zhang X; Dong S; Jia Q; Zhang A; Li Y; Zhu Y; Lv S; Zhang J
    Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31320543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent insights into cardiac hypertrophy and left ventricular remodeling.
    Kerkela R; Force T
    Curr Heart Fail Rep; 2006 Apr; 3(1):14-8. PubMed ID: 16684492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide.
    Garcia JA; Incerpi EK
    Arq Bras Cardiol; 2008 Jun; 90(6):409-16. PubMed ID: 18592095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.