BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 12032567)

  • 1. Extensive genomic duplication during early chordate evolution.
    McLysaght A; Hokamp K; Wolfe KH
    Nat Genet; 2002 Jun; 31(2):200-4. PubMed ID: 12032567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes.
    Christoffels A; Koh EG; Chia JM; Brenner S; Aparicio S; Venkatesh B
    Mol Biol Evol; 2004 Jun; 21(6):1146-51. PubMed ID: 15014147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes.
    Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H
    Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution.
    Pébusque MJ; Coulier F; Birnbaum D; Pontarotti P
    Mol Biol Evol; 1998 Sep; 15(9):1145-59. PubMed ID: 9729879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome.
    Ruvinsky I; Silver LM; Gibson-Brown JJ
    Genetics; 2000 Nov; 156(3):1249-57. PubMed ID: 11063699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern and timing of gene duplication in animal genomes.
    Friedman R; Hughes AL
    Genome Res; 2001 Nov; 11(11):1842-7. PubMed ID: 11691848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of en bloc duplication in vertebrate genomes.
    Abi-Rached L; Gilles A; Shiina T; Pontarotti P; Inoko H
    Nat Genet; 2002 May; 31(1):100-5. PubMed ID: 11967531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution.
    Horton AC; Mahadevan NR; Ruvinsky I; Gibson-Brown JJ
    J Exp Zool B Mol Dev Evol; 2003 Oct; 299(1):41-53. PubMed ID: 14508816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex history of a chromosomal paralogy region: insights from amphioxus aromatic amino acid hydroxylase genes and insulin-related genes.
    Patton SJ; Luke GN; Holland PW
    Mol Biol Evol; 1998 Nov; 15(11):1373-80. PubMed ID: 12572601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution.
    Cañestro C; Albalat R; Hjelmqvist L; Godoy L; Jörnvall H; Gonzàlez-Duarte R
    J Mol Evol; 2002 Jan; 54(1):81-9. PubMed ID: 11734901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain.
    Holland LZ; Short S
    Brain Behav Evol; 2008; 72(2):91-105. PubMed ID: 18836256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More genes in vertebrates?
    Holland PW
    J Struct Funct Genomics; 2003; 3(1-4):75-84. PubMed ID: 12836687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic phylogenomic evidence of en bloc duplication of the ancestral 8p11.21-8p21.3-like region.
    Vienne A; Rasmussen J; Abi-Rached L; Pontarotti P; Gilles A
    Mol Biol Evol; 2003 Aug; 20(8):1290-8. PubMed ID: 12777526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity.
    Freeling M; Thomas BC
    Genome Res; 2006 Jul; 16(7):805-14. PubMed ID: 16818725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Genome rearrangement and gene duplication in chordate evolution].
    Hori H
    Tanpakushitsu Kakusan Koso; 1999 Mar; 44(3):234-44. PubMed ID: 10097655
    [No Abstract]   [Full Text] [Related]  

  • 18. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast.
    Gu Z; Cavalcanti A; Chen FC; Bouman P; Li WH
    Mol Biol Evol; 2002 Mar; 19(3):256-62. PubMed ID: 11861885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of gene duplications and block duplications in eukaryotic genomes.
    Li WH; Gu Z; Cavalcanti AR; Nekrutenko A
    J Struct Funct Genomics; 2003; 3(1-4):27-34. PubMed ID: 12836682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.
    Gu X; Wang Y; Gu J
    Nat Genet; 2002 Jun; 31(2):205-9. PubMed ID: 12032571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.